

 /$$$$$$$ /$$$$$$ /$$ /$$ /$$ /$$
| $$__ $$ /$$$_ $$| $$ / $$| $$ / $$
| $$ \ $$| $$$$\ $$| $$/ $$/| $$/ $$/
| $$$$$$$ | $$ $$ $$ \ $$$$/ \ $$$$/
| $$__ $$| $$\ $$$$ >$$ $$ >$$ $$
| $$ \ $$| $$ \ $$$ /$$/\ $$ /$$/\ $$
| $$$$$$$/| $$$$$$/| $$ \ $$| $$ \ $$
|_______/ ______/ |__/ |__/|__/ |__/

Designed by Aziz “Hax$” Al-Yami

Written by Aziz “Hax$” Al-Yami

 Last Updated: 05/01/2018

 Produced & Engineered by Kyle “simple” McDowell

Table of Contents
(use CTRL + F)

[1] Introduction
[2] Universal Rules
 [2.1] Hardware
 [2.1.1] Quantity of Buttons
 [2.1.2] Button Locations
 [2.2] Software
 [2.2.1] Override
 [2.2.2] Macros & Button Binds
 [2.2.3] Order-Dependency
[3] Gamecube Controller Overview
 [3.1] Basics
 [3.2] Zones
 [3.2.1] X-Tilt/X-Smash & Y-Tilt/Y-Smash
 [3.2.2] 50° Line
 [3.2.3] Special Moves
 [3.2.4] Roll & Spotdodge
[4] Digital Controller Overview
 [4.1] Modifiers
 [4.2] Restrictions
[5] Nerfs
 [5.1] Travel Time
 [5.1.1] Smash DI
 [5.1.2] Pivot Tilts
 [5.1.3] Notch Integrity
 [5.1.4] Dash Back Out of Crouch
 [5.2] Precision
 [5.2.1] Y-Tilt + > 50°
 [5.2.2] Neutral-B Integrity
 [5.2.3] Shield Drop Down
 [5.2.4] Lightshield
 [5.2.5] Ambiguous DI
 [5.2.6] Ice Climbers Desyncs
 [5.2.7] Wavedash
 [5.2.8] Firefox
 [5.2.9] Other
 [5.3] Summary

[6] Wavedash Mechanics
 [6.1] The Ledge
 [6.1.1] Intangibility Thresholds
 [6.1.2] Ledge Elevation
 [6.1.3] Airdodge Angle
 [6.1.4] Jump Trajectory
 [6.2] Skill System
 [6.2.1] Difficulty
 [6.2.2] Distance
 [6.3] Traction Anomaly
[7] Modifier Buttons
 [7.1] Modifier 1
 [7.2] Modifier 2
 [7.3] Horizontal Modification Conditionals
[8] Non-Dedicated Modifiers
 [8.1] Restrictions
 [8.1.1] Jump Trajectory Integrity
 [8.1.2] Tilt/Smash Integrity
 [8.1.3] 50° Line Integrity
 [8.1.4] Down-B/Side-B Integrity
 [8.2] Definitely Not Action-Direction Button Binds
 [8.2.1] Firefox
 [8.2.2] Slight DI
 [8.3] Sort of Action-Direction Button Binds
 [8.3.1] Shield Tilt (Automatic)
 [8.3.2] Shield Tilt (Manual)
 [8.3.3] Wavedash
 [8.3.4] Home Row Upwards Airdodge
 [8.4] Summary
[9] Other Interactions
 [9.1] UF/DF-Smash
 [9.2] D-Pad
[10] B0XX Advantages
 [10.1] Travel Time
 [10.1.1] Quarter-Circle Smash DI
 [10.1.2] Wiggle
 [10.1.3] Samus’ Short Hop Fastfall Missile
 [10.1.4] Dr. Mario’s Reverse Up-B Cancel
 [10.1.5] Crouch -> U/UF-Tilt
 [10.1.6] Moonwalk
 [10.1.7] Dash Back -> Dash Back

 [10.1.8] Dash -> Jump With Backwards Trajectory
 [10.1.9] Aerial Drift
 [10.2] Precision
 [10.2.1] No-Fastfall from Ledge
[11] Gamecube Controller Advantages
 [11.1] Hardware
 [11.1.1] Most Intangible Ledgedash
 [11.1.2] Actuation Time
 [11.1.3] Wank Smash DI
 [11.2] Analog
 [11.2.1] Lightshield
 [11.2.2] Trajectory DI
 [11.2.3] Automatic Smash DI
 [11.2.4] Walk/Run
 [11.2.5] Firefox
 [11.2.6] Airdodge
[12] 1.0 Cardinal
 [12.1] Overview
 [12.2] Redesign
 [12.3] Plan B
[13] Conclusion
[14] F.A.Q.
[15] Patch Notes

[1] Introduction

Within the competitive Super Smash Bros. Melee scene, the
ergonomic shortcomings of the Nintendo Gamecube controller have
taken their toll on many players. Four years ago, I infamously
joined this club. On May 4th, 2014 I incurred an injury while
playing Melee that led to a series of surgeries on my left wrist.
While this was ultimately resolved, it shed light on a condition
that had even greater implications. My first MRI results revealed
that my left thumb was showing signs of arthritis at the age of
19. This inevitably led me to learn that the Gamecube controller
was no longer an option.

In December 2016, an opportunity arose. Hit Box, a company known
for their moderately popular stickless controllers, had been
looking to dip their toes in the world of Melee with their latest
product: the Smash Box. Advertised as precise and ergonomic, the
Smash Box was widely regarded as revolutionary. Confident that I
could provide valuable insight, I decided to reach out.

Fatefully, Hit Box shipped me a prototype Smash Box for
playtesting purposes. The moment it arrived in the mail, I
started evaluating its performance. But just as quickly as I
began, I realized that finding flaws in the current model was the
least of my concerns. The real question was how one would even go
about rationalizing the Smash Box’s design. While it wasn't hard
for me to point out improvements that could be made to the Smash
Box’s button layout, nearly everything software-related was
beyond my comprehension at the time. Like most Melee players, I
had been competing for over 10 years without ever giving the game
engine much thought. Suddenly, I was staring at a bunch of
coordinates I couldn't recognize, and an instruction manual I
could barely understand. Hit Box had opened the gateway to the
future, and there was no going back.

As I slowly familiarized myself with the Smash Box, it became
clear just what I had gotten myself into. Hit Box's invention had
seemingly endless potential, and while I wasn't sure where to
start, I knew that I was determined to perfect it. As the weeks

went by, these aspirations of mine struggled to align with a
company that had deadlines to meet. In order to rebuild the Smash
Box from the ground up, I needed complete creative control, which
meant cutting ties with Hit Box on January 6th, 2017. While this
decision wasn’t easy, I knew that it would be justified by the
contribution I’d eventually make to the game. In the most
interesting journey back to Melee I could've asked for, I sought
out to give Hit Box's concept the iteration it deserved. I called
this the B0XX.

The B0XX would end up taking me over a year to complete. As I
continued to make breakthroughs in my research and gain skill
with the controller, my approach constantly shifted along the
way. Eventually, I settled on the goal of solving the hand health
epidemic without isolating the Gamecube controller playerbase.
This seems to resonate with most people in need of the B0XX.
Among us, there is little-to-no interest in competing on an
unfair playing field; thus, the model I'll be presenting is
intended to mimic the performance of a Gamecube controller as
closely as possible. And while a perfect replica may not exist, I
believe I’ve achieved something evenly-matched.

For those who are curious, the advantages of a digital controller
generally stem from two things. The first is travel time (not the
same as actuation time, which is discussed in Section 11.1.2).
Since physical recoil doesn’t exist with directional keys,
certain motions (i.e. pivot U-tilt) are made reasonable by these
controllers. The second is precision. Since any coordinate can be
pinpointed with certainty, there is effectively no difference
between performing an Ice Climbers desync (a single X or Y-value
on the entire grid) and a tap jump.

Wherever possible, I targeted and removed what stood out as
unrealistic to reliably perform on the Gamecube controller.
Despite these efforts, it must be understood that the B0XX is not
obsolete to the Gamecube controller, nor should that be what is
expected of it. There are some inherent advantages that cannot be
taken away. In Chapter 10, I will make it clear what these are.

Similarly, the B0XX has several inherent disadvantages. These
also tend to fall under two categories. The first is a lack of

intuition. Several techniques, such as angling Firefox,
undoubtedly have a steeper learning curve with this controller.
The most meaningful disadvantages, though, have to do with the
B0XX being objectively incapable of performing certain
techniques. Since the majority of the coordinates on the plane
aren’t present on this controller (in addition to the rules I’ve
enforced further reducing what it’s capable of), its potential is
capped in several areas.

That being said, it would be foolish to think that taking the
time to learn a more complex controller with limited options
ought to be rewarded with the advantages the B0XX grants if it
isn’t restricted. Perhaps the most obvious example that
regulation is needed in some capacity is the ability to pinpoint
the 16.8° (shallowest) wavedash, a feature I consider game-
breaking. Some of these advantages aren’t so crystal clear until
someone has a significant amount of mastery under their belt,
which is why it took me so long to finalize my rationale.

Throughout my decisions, I attempted to design the B0XX as
objectively as possible. Not a single coordinate on the
controller is arbitrary, though that isn’t to say that the B0XX
is perfect. The potential to revise this controller, whether for
the sake of fluidity or game balance, is absolutely still there.
Nonetheless, I am confident I’ll be providing a starting point
that is more than sufficient.

Lastly, we must be aware of the social good that comes alongside
the solution to our biggest controller-related problem remaining.
In 2017, we were able to find ways to fix inconsistent
performance among Gamecube controllers (which, ironically, likely
stemmed from the digital controller revolution), but health
concerns still remain. Third-party controllers may be a foreign
concept to the Melee community, but they are something we have
overlooked for too long. In most games and sports, several
different models of equipment are permitted, and understandably
so; personalization is critical to the enjoyment of any activity.
The Melee community, however, is faced with something much more
than just that. For the longevity of our players, it is important
that we work together to legalize some iteration of the B0XX.

[2] Universal Rules

Parameters that any tournament legal controller should abide by.

[2.1] Hardware

[2.1.1] Quantity of Buttons

All controllers should consist of a 1:1 remapping* of the
Gamecube controller. For clarification, the actuators I am
referring to are the A, B, digital L, digital R, X, Y and Z
buttons, the analog stick/C-stick, and the D-pad. A controller
with a digital analog stick and/or C-stick should contain one of
each cardinal direction per stick. The C-stick may also transform
into the D-pad through the use of a toggle (so long as this
cannot conflict with the actuation of C-stick inputs).

A controller may also contain buttons that guarantee certain
analog L/R-values. This is a logistical requirement for
controllers that do not have springs, as they would otherwise be
unable to generate these. While analog L/R buttons inherently
come with a precision advantage, they are inferior to the full
analog range of a spring.

For logistical reasons, the Gamecube controller must resort to a
spring for analog L/R-values. It should also be noted that the
Gamecube controller can guarantee certain analog L/R-values
through the use of either a stopper or calibration exploits (see
Section 11.2.1).

*Modifier buttons are only permitted on controllers with at least
one digital stick, and are only allowed to influence digital
directional inputs. Modifier buttons may also influence L/R’s
analog value. There is no harm in having an unlimited amount of
modifier buttons (so long as they abide by the rules listed in
Section 4.2), although it is best to keep this number to a
minimum (the B0XX has two).

[2.1.2] Button Locations

Barring a few exceptions (see Section 2.2.2), controller
manufacturers should be allowed to arrange their actuators
however they feel is logical. In general, it would be backwards
for us to demand anything short of a well-designed controller.

For the most part, the Gamecube controller’s layout is fine for
performing in-game techniques frame perfectly. The main exception
is the C-stick, which is in a much less ideal location. As a
result, the best way to grip the Gamecube controller is rather
unorthodox.

“Javi claw,” a style of grip that has flown under the radar.

Employing some variation of right hand claw is the only way to
access the Gamecube controller’s C-stick at all times. While this
grip isn’t without its downsides, there are ways to mitigate
nearly all of them. Despite this, right hand claw remains
unpopular, likely due to its awkward nature. That is to say that
most players opt not to wield the Gamecube controller optimally
due to the discomfort that comes with doing so.

Unlike the Gamecube controller, any modern controller will have
its C-stick divided into four easily accessible buttons.

Sometimes, upholding game purity means compromising quality of
life to a degree that isn’t worth it. In the same vein that the
Melee community has come to accept that certain aspects of the
game (dash back/shield drop) unquestionably warrant redesign, the
C-stick is an artifact that is unfavorable for competitive play.
I believe that we should not be opposed to, but supportive of a
controller that rectifies this.

As to offer Gamecube controller users the same luxury, the B0XX
is compatible with the Wii Nunchuk (once plugged in, it replaces
the analog stick and L button). This will give everyone the
option to play with the B0XX’s superior right hand layout. The
Nunchuk utilizes the same stickbox as certain runs of the
Gamecube controller, making for an easy transition.

As far as the rest of the B0XX’s layout goes, the elephant in the
room is surely the Up button’s location. This was chosen by
process of elimination. It is a must that the left pinky is
assigned shield (L) and the left thumb operates the modifier
buttons. If the controller is then given a WASD arrangement, Up
forces the user to shift their left wrist just to access it. This
makes the right pinky the most efficient location for Up.

Finally, I should clarify L/R/Z’s recommended roles. As I
mentioned, L is intended to be used for shield, though it should
also be used to tech. L-cancels should be performed with Z, and
downwards airdodges (wavedashes) should be performed with R
(you’ll have to shift your right wrist for these, since R and Y
aren’t on the home row). Upwards airdodges are a special case
that will be covered in Section 8.3.4.

[2.2] Software

[2.2.1] Override

Within the context of Melee, opposite cardinal directions must be
allowed to override each other (Left -> Right = Right. Pressing
Left + Right on the same frame generates a neutral input). This
mimics an analog stick most closely, as it shouldn’t be possible
to receive an unwanted neutral input by failing to release the
first cardinal before pressing the second (which would happen if
opposite cardinals negated each other).

When a cardinal is overriden by the actuation of the opposite
cardinal, it should not reactivate once the opposite cardinal is
released. All actuations must be performed manually.

[2.2.2] Macros & Button Binds

Macros (inputs occuring on future frames. Can also pertain to
different outcomes being generated if certain inputs take place
within a specific # of frames of each other) are illegal.

Action-action button binds* (more than 1 of A/B/C/L/R/X/Y/Z bound
to a single button) are illegal.

Action-direction button binds* (A/B/C/L/R/X/Y/Z bound to an
impact on the analog X/Y-coordinates) must be evaluated on a
case-by-case basis. Traditional action-direction button binds
(i.e. Up bound to A to produce U-tilt) are illegal; however, the
B0XX uses some of its action buttons in a unique way to pinpoint
a few niche coordinates (see Section 4.2 and Chapter 8).

*While these rules ban button binds on a software level, it
remains possible to achieve the same effect through hardware. Up
and A, for example, could be arranged in a yin-yang formation in
order to guarantee simultaneous actuation. Even though 1:1
remapping encompasses this exploit to a degree (since it is
illogical to devote your only Up button to your only A button,
etc.), it is still worth stating that constructing buttons in a
manner that guarantees simultaneous actuation is illegal.

[2.2.3] Order-Dependency

The B0XX contains two instances of buttons generating different
outcomes depending on whether or not another button is already
being held (see Sections 7.3 and 8.3.4). These are needed to
distinguish the player's intention in situations where
compatibility with two or more techniques would otherwise
conflict (i.e. the L button can be used to shield or airdodge).

Order-dependency is innocuous so long as:

-All inputs are in line with what is normally legal for an
actuator to perform.

-“After” inputs are inclusive of simultaneous presses. For
example, if Up and L are pressed on the same frame, the
controller must read this as “Up after L” and “L after Up.”
This preserves a manual system of inputs, whereas
recognizing the inputs as “simultaneous” would be a macro.

[3] Gamecube Controller Overview

A thorough understanding of the analog stick’s coordinate plane
will play a crucial role throughout this document. Excluding
Section 3.2.3, all of these concepts apply to the C-stick as
well.

[3.1] Basics

The above diagram contains every coordinate in the game, and
clearly outlines the 9 sections of the grid (deadzone/4
cardinals/4 quadrants). The 4 quadrants begin in northeast, and
ascend counter-clockwise.

The X and Y axes operate in increments of .0125. Among these
coordinates, there are some notable ones:

-.2875 is the minimum value that activates an axis (i.e.
X .2875 activates east/X .2875 Y .2875 activates northeast).

-1.0 is the highest magnitude X/Y-value, and can only be
paired with 0 on the other axis. Due to its microscopic
range, X or Y +/-1.0 is notorious for being difficult to
pinpoint on the Gamecube controller (see Chapter 12).

-X +/-.7000 Y +/-.7000 (45°) are the intended diagonal
corners.

-X +/-.9500 Y +/-.2875 (16.8°) and X +/-.2875 Y +/-.9500
(73.2°) are the shallowest* and steepest** angles
respectively.

*Shallow implies that the vector hugs the X-axis.

**Steep implies that the vector hugs the Y-axis.

[3.2] Zones

[3.2.1] X-Tilt/X-Smash & Y-Tilt/Y-Smash

On either axis, there are thresholds that serve similar purposes.
The X-axis has had these documented extensively due to the
infamous dash back dilemma, the Y-axis not so much. Along the X-
axis, .2875 through .7875 is X-tilt, while .8000 through 1.0 is
X-smash. Along the Y-axis, .2875 through .6500 is Y-tilt,
while .6625 through 1.0 is Y-smash. X .8000 and Y .6625 aren’t

just the cutoffs for tilts/smashes, but several other things as
well, such as dash/pivot on the X-axis, and tap jump/shield drop/
fastfall on the Y-axis.

[3.2.2] 50° Line

There is a 50° line that separates several techniques in the
quadrants. Examples include angled F-tilts/vertical tilts, ledge
get-up/ledgefall, and horizontal/vertical aerials upon pressing
the A button.

[3.2.3] Special Moves

Neutral-B is unconditionally |X| <= .5875 with |Y| <= .5375. When
your character is airborne, vertical-B is |Y| => .5500, and side-
B is |X| => .6000 with |Y| <= .5375.

When your character is grounded, the zones for vertical-B and
side-B are usually swapped as shown. This is true for most, but
not all grounded states. Crouch, for example, uses the same zones
as airborne.

|X| <= .5875 with Y -.5500 will not produce a B move when these
zones are used. This was likely a programming oversight.

[3.2.4] Roll & Spotdodge

|X| => .7000 causes roll and Y <= -.7000 causes spotdodge. Y <=
-.7000 also causes crouch.

[4] Digital Controller Overview

[4.1] Modifiers

Through the use of modifiers, digital inputs are able to
adequately mimic an analog stick. Without them, the 4 arrow keys
can only pinpoint the highest magnitude cardinals (X or Y +/-1.0)
and 45° angles (X +/-.7000 Y +/-.7000). Modifiers can be thought

of as shift keys: when held alongside the arrow keys, they can be
used to select any coordinate within the designated section of
the grid.

The provided diagram shows examples of techniques that require
the use of modifiers. Slight presses of the stick and angles that
aren’t 45° can’t be performed with the 4 arrow keys alone.

[4.2] Restrictions

All modifiers on the B0XX abide by three overarching rules.

Modifiers cannot change the section of the grid you’re in
(deadzone/4 cardinals/4 quadrants). This job is reserved for the
4 arrow keys.

Modifiers cannot pinpoint banned coordinates (see Section 5.2).
These are the areas of the game where digital inputs have too
much of a precision advantage over an analog stick otherwise.

Action buttons (A/B/C/L/R/X/Y/Z) can possess modifier properties
and influence the analog X/Y-coordinates. In doing so, they must
abide by several rules that ensure they can’t cause disingenuous
behavior (see Chapter 8). For clarification, this feature is not
meant to permit action inputs bound to directional inputs in the
traditional way (i.e. U-tilt button). It is simply meant to
accommodate niche coordinates that Modifiers 1 and 2 don’t have
room for. For example, the Firefox angle pictured in Section 4.1
is comprised of Up + Left + Modifier 2 + C-Up. While C-Up remains
actuated throughout this interaction, its action input bears no
significance: C-Up merely serves as the physical button needed to
identify these coordinates.

The third rule (also known as non-dedicated modifiers) can be
considered the hallmark of the B0XX. Without it, the controller’s
minimalistic button layout would be unattainable.

[5] Nerfs

[5.1] Travel Time

Banning button sequences that involve physically impossible
analog stick motions.

[5.1.1] Smash DI

On the Gamecube controller, the go-to method for SDI is quarter-
circle SDI. This is when you start in a cardinal, then go into an
adjacent diagonal to SDI twice by no later than frame 4.

Due to the lack of physical recoil on the B0XX, an additional
quarter-circle SDI motion is feasible. This makes for a total of
3 SDI inputs, which can also occur as rapidly as a frame apart
from each other (although not spacing them out increases the
chance that they overlap). Compared to the Gamecube controller,
this is excessive.

To balance things out, the second quarter-circle SDI motion must
be removed. But before this can happen, we must establish the
hitlag windows that are consistent with competitive play.
Usually, these last for <= 9 frames, since almost all of the
viable moves in the game hit for <= 20% (18%/19%/20% = 9 frames
of hitlag). From there, it is relevant that you cannot SDI on the
first frame of hitlag. This leaves us with SDI windows of <= 8
frames.

Frame 1: Cannot SDI
Frame 2: East (SDI)

Frame 3: Northeast (SDI)
Frame 4: Southeast (Banned)
Frame 5: Southeast (Banned)
Frame 6: Southeast (Banned)
Frame 7: Southeast (Banned)
Frame 8: Southeast (Banned)
Frame 9: Southeast (Banned)

In accordance with the Gamecube controller, the B0XX has been
programmed to limit the player to only one quarter-circle SDI
motion (2 SDI inputs) per 9-frame hitlag window. When a cardinal
is followed by a diagonal on a later frame, the correct diagonal
to go to next is banned for 6 frames. This input, if attempted,
is not “pushed” to frame 10 (as that would be a macro); it is
killed entirely.

Following this nerf, the only remaining concern involves a
technique known as double-tapping. This is when the middle and
index fingers (in that order) are used to actuate a single button
twice in succession. In theory, this can be used to bypass the
current SDI nerf. By double-tapping a cardinal, then going to an
adjacent diagonal, 3 SDI inputs within 9 frames of hitlag remains
possible.

For the time being, I chose not to address double-tapping due to
my inability to recreate it in practice (double-tapping has a
steep learning curve). If double-tapping proves to be
exploitable, I will remove it from the B0XX.

[5.1.2] Pivot Tilts

Due to the physical recoil caused by a pivot motion, it is nearly
impossible to pinpoint the ideal zones for certain tilts shortly
afterwards on the Gamecube controller. Determining which of these
the B0XX can have will require case-by-case evaluation.

Pivot F-tilt isn’t a culprit. It can reliably be done by flicking
the stick and pressing the A button as the stick makes its return
across X-tilt.

Likewise, pivot UF/DF-tilt can be made very reliable. This is due
to the fact that their ideal zones come into contact with the
case of the Gamecube controller, making it possible to notch for
them. By centering your corners on Y .6125 through .6500, you’ll
be able to perform these by quarter-circle pivoting.

The vertical pivot tilts are where the Gamecube controller runs
into problems. It is nearly impossible to reach the ideal zones
for these immediately after the pivot; however, there is still a
good method for pivot D-tilt. By quarter-circling downwards into
Y-smash + > 50° territory and waiting 4 frames (this timer begins
upon entering Y-tilt), you can perform a D-tilt afterwards. Pivot
U-tilt cannot be performed in this manner due to tap jump.

On the B0XX, the vertical pivot tilts have been brought in line
with the Gamecube controller. When any of the coordinates capable

of performing a dash (X => .8000) are actuated for specifically 1
frame (this is how a pivot is performed), the A button won’t work
within the ideal zones for these tilts for a set period of time.

Pivot U-tilt: 15 frames (removed)
Pivot D-tilt: 4 frames

[5.1.3] Notch Integrity

In Section 5.1.2, I brought up some rather uncommon notches that
assist with pivot UF/DF-tilt. While these notches do exist, they
are ultimately bad to have. This is because it is impossible to
construct them without losing out on better notches.

There are several points of interest in proximity of the
NE/NW/SW/SE grooves.

In all 4 quadrants, the pivot UF/DF-tilt notch sites happen to be
near X +/-.7000 Y +/-.7000. These are significant for being the
best* trajectory DI coordinates in the game against moves that
cause trajectory 361 knockback (nearly half of the moves in the
game do this). Therefore, any notch must be weighed against how

far it takes you away from X +/-.7000 Y +/-.7000; in other words,
how much DI it costs you. Pivot UF/DF-tilt notches both take you
at least 4 degrees away from these coordinates. This alone isn’t
a worthwhile trade-off.

*Technically, X +/-.7125 Y +/-.7000 and X +/-.7000 Y +/-.7125 are
the best trajectory DI coordinates. These aren’t listed because
they have special traits that make them difficult to pinpoint.

In quadrants 3 and 4, there are two more techniques that benefit
from notches. The first is jab cancel, which spans from Y -.7000
to -.7500. This is when you cancel a jab’s IASA frames with a
crouch in the opposite direction, then press A to jab again. The
second is shield drop, which spans from Y -.6625 to -.6875 on
vanilla and Y -.6625 to -.7875 on Universal Controller Fix (a mod
that has become the tournament standard). Pivot DF-tilt notches
(Y -.6125 through -.6500) cannot coincide with the notches for
either of these techniques (regardless of game version).

Based on this information, the best coordinates to center your
corners on (if playing on UCF) are:

Quadrants 1, 2, 3 and 4: X +/-.7000 Y +/-.7000

These coordinates give you the best trajectory DI in quadrants 1
and 2, and the best trajectory DI, jab cancel, and UCF shield
drop in quadrants 3 and 4.

Having your corners on these values means not having pivot UF/DF-
tilt notches, which I believe the B0XX should remain true to. At
this point, both of these pivot tilts have to be re-evaluated
based on how well a Gamecube controller with X +/-.7000 Y
+/-.7000 corners can perform them.

In the same fashion as pivot U/D-tilt, there is still a good
method for pivot DF-tilt, but not UF-tilt. Whereas X +/-.7000 Y
-.7000 is valid for a DF-tilt after 4 frames, X +/-.7000 Y .7000
will prompt tap jump. Pressing the A button within the ideal
zones for these tilts (after pivoting) has been restricted
accordingly.

Pivot UF-tilt: 15 frames (removed)
Pivot DF-tilt: 4 frames

[5.1.4] Dash Back Out of Crouch

Disclaimer: UCF does not affect dash back out of crouch (dash
back and dash back out of crouch are two separate techniques).

In today’s metagame, an increasingly popular choice when
techchasing is crouching in front of a knocked down opponent.
This removes the need to react to their get-up attack, since
crouch cancel renders get-up attack invalid. From there, dash out
of crouch can be used to follow your opponent’s wake-up roll.
While dash out of crouch isn’t without execution requirements of
its own, many players find the most success techchasing by
rinsing and repeating this strategy.

Unfortunately, this strategy has a glaring weakness: it is
humanly impossible to successfully dash back out of crouch 100%
of the time. While dashing forwards and backwards out of crouch
share certain criteria, there is a key difference between them
that attaches a failure rate to the latter.

The execution test incurred by dashing in either direction out of
crouch is being able to traverse from crouch to dash (X-smash)
within 2 frames (if this motion takes 3 or more frames to
complete, your character will walk). Through the use of one
method or another, this criteria isn’t hard to satisfy. Some
players swear by rolling the analog stick along the bottom of the
rim in order to minimize its travel route, while others prefer to
return the stick to its centerpoint before pressing it
horizontally. With practice, either of these methods should
ensure a 100% success rate on dash forward out of crouch.

Along the way to X-smash, X +/-.7750 Y -.6125 and X +/-.7875 Y
-.6125 (squatRV) cannot be avoided 100% of the time.

When it comes to dash back out of crouch specifically, any method
that does not involve hugging the bottom of the rim is made
unviable by squatRV. Located at Y -.6125, squatRV will cause your
character to stand up from crouch. SquatRV can be disregarded
when dashing forwards out of crouch, as it can be cancelled into

dash forward; however, squatRV cannot be cancelled into dash
back. This wouldn’t have been a problem if not for the fact that
squatRV cannot be avoided 100% of the time.

Even if the most direct route from crouch to dash is taken, two
dreaded coordinates must be traversed in the process: X +/-.7750
Y -.6125 and X +/-.7875 Y -.6125. If you are polled in these
coordinates, dash back out of crouch will fail. Since this is
impossible to account for, there is always an element of luck
when attempting dash back out of crouch with an analog stick.

By crouching, then dashing in a quadrant, it is impossible to
fail dash back out of crouch with digital inputs.

Because digital inputs don’t have a travel route, they are able
to skip from crouch to dash without traversing squatRV. While
removing this advantage may seem hopeless, it is actually just a

matter of banning the button sequence shown in the diagram. This
button sequence in particular is concerning because it consists
of Down -> Down-Forward, which means the player never has to
release Down in order to perform dash back out of crouch. For as
long as this is true, dash back out of crouch cannot fail;
however, if Down must be released, then digital inputs are forced
to incur risk. In order to create the need to release Down, it
must be illegal for the B0XX to travel from crouch territory to
diagonal dash territory. While the B0XX’s programming doesn’t
outright ban this button sequence, it is made impossible through
means that will be revealed in Sections 8.2.1 and 8.3.3. For now,
operate under the assumption that the B0XX must fall back on a
secondary dash back out of crouch method.

Once Down has to be released, the combination of squatRV and the
2-frame dash window creates an execution test for dash back out

of crouch.

With dashing in the quadrants out of the picture, the B0XX is
forced to perform dash out of crouch in a cardinal direction.
There are only two valid button sequences for this:

Sequence A (Success)

Frame 0: Crouch
Frame 1: Dash (X +/-1.0 Y 0)

Sequence B (Success)

Frame 0: Crouch
Frame 1: X +/-.7000 Y -.7000
Frame 2: Dash (X +/-1.0 Y 0)

Having to release down also makes for the possibility of a third
button sequence. This will cause dash back out of crouch to fail:

Sequence C (Failure)

Frame 0: Crouch
Frame 1: SquatRV (X 0 Y 0)

Sequence A is a one-frame link, while Sequence B is a pseudo-two-
frame link (Down and Forward can overlap for one frame, but Down
must be released on the next frame for dash to occur). Meanwhile,
Sequence C is an accidental series of inputs that can result from
having to perform a skillful motion. All in all, removing the
B0XX’s ability to crouch, then dash in a quadrant forces the
player to think twice about performing dash back out of crouch.

[5.2] Precision

Removing the ability to pinpoint certain coordinates with 100%
accuracy.

[5.2.1] Y-Tilt + > 50°

Within the quadrants, > 50° territory can be used to perform
turnaround vertical tilts. In doing so, it is relevant whether
you are pointing in Y-tilt or Y-smash. Whereas the former can be
used in any situation, the latter can only be used in buffered
situations (i.e. L-cancel lag). This is because Y-smash is
associated with techniques that conflict with your ability to
perform tilts, such as tap jump and smash attacks.

On the Gamecube controller, the elusive Y-tilt + > 50° is
extremely difficult to pinpoint. As a result, people usually
perform non-buffered turnaround vertical tilts by turning around,
then pointing vertically (in the north or south corridor), which

can only be equal to or slower than pointing directly at Y-tilt +
> 50°. To recreate this inconvenience, the B0XX cannot pinpoint
Y-tilt + > 50°.

Additionally, the B0XX cannot pinpoint Y -.6625, -.6750, or
-.6875. Even though these coordinates are not in Y-tilt
territory, they can be used to perform a buffered turnaround D-
tilt (Y <= -.7000 causes crouch, which prevents this).

[5.2.2] Neutral-B Integrity

One of the Gamecube controller’s intrinsic risks is overshooting
into side-B territory when attempting to neutral-B in the other
direction.

Digital inputs can circumvent this risk by situating the analog
stick in X .2875 through .5875 (the zone that ensures a neutral-B
in the chosen direction).

Since this would otherwise feel disingenuous, attempting to
neutral-B with the analog stick in X .2875 through .5875 will
result in your X-value being pushed into side-B territory.
X .7375, the coordinate this pushes you to, is a non-arbitrary
one that the B0XX already contains elsewhere. This means that the
only way to neutral-B is to completely release the horizontal(s).

[5.2.3] Shield Drop Down

With the Gamecube controller, there are two drastically different
ways to shield drop.

The first shield drop method involves shutting off roll, then
going to the SW/SE corner of the stick (which has been notched).
This has become well-known for its ease and reliability in recent
years. Colloquially, it is called the “Axe method.”

The second method involves pointing directly down at shield
drop’s Y-values. This lets you shield drop as early as frame 2
(if you haven’t shielded yet). In theory, there is no reason not
to shield drop this way every time. In reality, however, this
method is far too difficult to perform consistently.

The key to removing shield drop down from the B0XX lies in the
order of priority within the game. If chosen on the same frame,
the game will prioritize:

Spotdodge (Y -.7000) > Roll (X +/-.7000) > Shield Drop (Y -.6625)

Therefore, if the only shield drop Y-values on the B0XX are
paired with roll X-values, shield dropping without shutting off
roll is impossible*. The B0XX uses the coordinates X +/-.7250 Y
-.6875, which abide by this rule.

*This nerf removes the B0XX’s ability to shield drop down on
frames 2, 3 and 4. There remains a method that involves tilting
shield downwards (in Y-tilt) for 4 frames, which then turns the
entire spotdodge range (Y <= -.7000) into shield drop on
specifically frames 5 and 6. This does not need to be targeted,
as it can reliably be performed with the Gamecube controller.

[5.2.4] Lightshield

Analog L/R 43, the largest lightshield in the game.

In Melee, analog L/R-values span from 0 to 140, with 43 being the
lightest press that generates a shield. Since L/R 0 through 42 do
not generate anything, it can be difficult to press the L/R
trigger precisely enough to pinpoint L/R-values equal to or close
to 43.

There are two ways to modify a Gamecube controller to bypass this
difficulty entirely, however, neither of them are without their

flaws. Most commonly, a physical stopper is inserted in the L/R
trigger. This lets the player press down forcefully and be halted
at the analog L/R-value of choice. While stoppers serve their
intended purpose, they come with the downside of preventing the
trigger from being digital pressed. This is why, in my opinion,
the better method is to manipulate the trigger’s calibration upon
plugin. In doing so, L/R 44 through 140 can be disabled on a
software level. This allows L/R 43 to be pinpointed by resting
the slider atop its digital press.

The second method allows you to pinpoint L/R 43 with one trigger
and have access to the entire analog L/R range with the other.
This would have been flawless if not for the existence of analog-
digital transition, a game mechanic that can cause your shield to
fail to protect you from physical attacks. Analog-digital
transition occurs when you are polled in L/R 43 through 140,
followed by digital L/R on the next frame. This results in an
analog shield protecting your character on frame 1, no shield
protecting your character from physical attacks on frames 2 and
3, then the expected digital shield on frame 4 (despite a shield
being visibly displayed the entire time). Similar to vanilla
Melee’s dash back dilemma, this polling sequence is impossible to
account for.

Luckily, a Gamecube controller can (and should) be made immune to
analog-digital transition. By removing the spring from an L/R
trigger (or manipulating its calibration), the entirety of L/R 43
through 140 can be disabled. This guarantees digital L/R presses
with the modified trigger, but conflicts with being able to
devote a trigger to analog L/R 43.

Based on this information, the ideal Gamecube controller contains
one springless trigger, and one trigger that has not been
manipulated in any way (so that it can select from the entire
analog L/R range). Since this Gamecube controller does not
contain a way to pinpoint L/R 43, it is appropriate to keep the
B0XX a small distance away from L/R 43 as well. The only non-
arbitrary L/R-value to nerf to is 49 (the size of the shield
generated by the Z button); therefore, the B0XX cannot pinpoint
L/R 43 through 48.

Analog L/R 140. Visibly identical to a digital shield, but
functionally different.

Additionally, there is a lightshield-related technique very few
players are aware of. By situating the L/R trigger’s slider atop
its digital press, L/R 140 will be generated. The significance of
L/R 140 is that it incurs the same amount of shield stun as a
digital shield, but cannot powershield.

Contrary to popular belief, powershielding physical attacks can
actually be disadvantageous. Because a successful powershield
pushes your character back, it can push them out of range for
certain out of shield options. In theory, L/R 140 would have been
useful in these situations. In reality, however, a Gamecube
controller cannot make use of this technique. Since L/R 140 can
only come after L/R 43 through 139, it is humanly impossible to
guarantee that you aren’t polled while traversing these L/R-
values. In the event that you are, an L/R 43 through 139 shield
will be generated for two frames, followed by analog L/R 140 on
the third (even if you are polled in L/R 43 through 139 on frame
1, followed by L/R 140 on frame 2). This defeats the purpose of
attempting this technique on a Gamecube controller.

As to avoiding raising any issues with lightshielding, the only
analog L/R-value the B0XX is capable of pinpointing is 49.

[5.2.5] Ambiguous DI

When you are thrown vertically, the best option is often to DI
ambiguously. This is when you make it difficult for your opponent
to discern which side of them you’re on. In these situations,
there are always “perfect coordinates;” ones that make it as hard
as possible for your opponent to tell.

In this situation, for example, X .4000/.4125 is the perfect mix-
up. In theory, if the B0XX had access to every X-value, it would
be able to pinpoint both of these coordinates; therefore, the
line has to be drawn somewhere.

The clear choice is 4 coordinates along the X-axis. Since less
than 4 (2) is grossly underpowered, while more than 4 (8) digs
into user-friendliness, this is the correct amount.

The significance of X +/-.7375, the final coordinate in this
range, will be explained in Section 7.1.

[5.2.6] Ice Climbers Desyncs

The B0XX does not contain any of the coordinates that cause Popo
and/or Nana to perform isolated actions. These are:

X +/-.8000 (Popo X-Smash/Nana X-Tilt)
Y +/-.6625 (Popo Y-Smash/Nana Y-Tilt)
X +/-.7000 Y Not Along Rim (Popo Roll)*

X Not Along Rim Y -.7000 (Popo Spotdodge/Nana Shield Drop)*
X Along Rim Y -.8000 (Popo Spotdodge/Nana Shield Drop) (UCF

Only)**
X .6250 (Popo Run/Nana Runbrake)***

X .7500 (Popo Teeter Break/Nana Teeter)***
Y .5625 (Popo Jump out of Dash/Run/Runbrake/Turnrun)

|X| <= .5875 Y -.5500 (Nana Neutral-B) (Grounded Only)
X Y or C X Y in Proximity of 50° Line (2 Different Aerials)

C X +/-.8000 (Popo F-Smash)
C Y +/-.6625 (Popo U/D-Smash)

*Based on the logic presented in Section 5.1.3, it is acceptable
to pinpoint X +/-.7000 and/or Y -.7000 (the sources of these
desyncs) along the rim.

**This desync is a byproduct of UCF’s modified shield drop range.

***These desyncs only work facing east. This is due to the
Gamecube controller’s X-axis spanning from -128 to 127 before
conversion to Melee values occurs, resulting in imbalances in
absolute values.

[5.2.7] Wavedash

Disclaimer: The B0XX is based on a stock Gamecube controller, not
one that contains wavedash notches.

If unrestricted, the B0XX’s most blatantly overpowered feature is
its ability to pinpoint the shallowest wavedash angle in the
game. It doesn’t take much experience with this controller to
realize that this needs to be nerfed in some capacity.

Initially, the B0XX had five wavedash angles. Just like the 16.8°
airdodge, the 73.2° wavedash was very unrealistic (albeit not
nearly as competitively advantageous). The lower and upper limits
clearly needed to be kept healthy distances away from the perfect
angles.

Following this realization, there wasn’t a need for more than
three wavedash angles. Choosing wavedash distances is extremely
unintuitive past the point of “short”/”medium”/”long,” anyway, so
this worked out well. These wavedashes were clearly around the
right lengths, but I eventually wanted to settle on angles that
weren’t just benchmark numbers. 30.1° and 59.9° had been chosen
because they were closest to 30° and 60°; the final product
needed a better explanation than that.

This would prove to be the most complex nerf of all, but I was
eventually able to find non-arbitrary wavedash angles within the
game. Coincidentally, these were only a coordinate off of the
ones I started with. They also mirrored each other, making for
the most elegant outcome I could’ve hoped for. The coordinates
for these angles are:

X +/-.8500 Y +/-.5000 (30.5°)*
X +/-.5000 Y +/-.8500 (59.5°)*

To learn about what makes these coordinates significant, refer to
Chapter 6.

I would also end up finding a reason to use X +/-.6500 Y +/-.6500
as the coordinates for the 45° wavedash (instead of X +/-.7000 Y
+/-.7000). This will be revealed in Section 8.3.2.

*These airdodge coordinates are only used in quadrants 3 and 4.
Airdodges that take place in quadrants 1 and 2 are adjusted
slightly (see Section 5.2.9).

[5.2.8] Firefox

Disclaimer: The B0XX is based on a stock Gamecube controller, not
one that has Firefox notches.

As with airdodging, the Gamecube controller incurs risk in
approaching 16.8° and 73.2° when angling certain up-B’s (such as
Firefox). The key difference between these two techniques is that
an airdodge takes off on frame 1, whereas up-B’s tend to take off
after a generous period of time. Fox’s up-B, for example, gives
the player 42 frames to aim. This makes it significantly easier
to perform shallow/steep up-B angles than shallow/steep airdodge
angles.

Furthermore, an up-B nerf is inherently extreme, since your
opponent knows that you cannot recover at certain angles. For
these reasons, this nerf is kept on the lighter end. The
coordinates for the B0XX’s shallowest/steepest up-B angles are:

X +/-.7375 Y +/-.2875 (21.7°)
X +/-.2875 Y +/-.7375 (68.3°)

These coordinates aren’t necessarily significant in-game,
however, they are coordinates that the B0XX already contains.
Since these coordinates produce angles that are appropriate for
an up-B nerf (4.5° from perfect), it is efficient to endorse them
as the shallowest/steepest up-B angles.

The significance of these coordinates will be revealed in Chapter
7.

[5.2.9] Other

There are a few cases of techniques requiring incredible
precision that don’t fall under any of the aforementioned
categories. All of the coordinates listed in this section are
illegal for the B0XX to have.

Middle UF/DF-Tilt & Middle UF/DF-Smash

One of the most heated debates during Melee’s design phase was
how the deadzone ought to be shaped and sized. There are remnants

on the game disc suggesting that circular deadzones, as well as
smaller deadzones were considered at some point. When these
ultimately didn’t make the cut, a technique that was shafted in
the process was the ability to F-tilt/F-smash at two more angles.

These less well-known F-tilt/F-smash angles still made it to the
final version, seemingly as an Easter egg. In each quadrant, a
single set of coordinates will let you perform them. These
coordinates are X +/-.9500 Y +/-.2875* (and C X +/-.9500 Y
+/-.2875), the ones that hug the X-deadzone corridor hardest.

Pikachu & Pichu’s Double Upwards Up-B

The equation for Pikachu and Pichu’s up-B pulses is ridden with
loopholes. While there’s no need to go into detail, the takeaway
is that there are exploitative coordinates that allow you to up-B
directly upwards twice. These are:

X +/-.5000 Y 0
X 0 Y -.5000

X +/-.4000 Y +/-.3000
X +/-.3000 Y -.4000

Peach’s Ledgedash

Widely perceived as one of the least threatening characters from
the ledge, Peach happens to have an unconventional “ledgedash”
that can grant her up to nine frames of actionable intangibility.
Unfortunately, this technique is nearly impossible to perform.
First, Peach must manipulate her ECB (environmental collision
box) by up-B’ing to the ledge. Then, she must wait out the 8
unactionable frames that occur upon grabbing the ledge and fall
on either frame 9 or 10. This fall can last for either 1 or 2

frames, however, if Peach falls for 2 frames, she must not
fastfall on frame 2. Then, Peach must jump on frame 2 or 3 (to
manipulate her ECB once again) and airdodge upwards on frame 3 or
4. This airdodge must take place at one of the following
coordinates along the rim:

Frame 3 Airdodge:

X +/-.5375 Y .8250 (56.9°)
X +/-.5375 Y .8375 (57.3°)
X +/-.5250 Y .8375 (57.9°)
X +/-.5250 Y .8500 (58.3°)
X +/-.5125 Y .8500 (58.9°)
X +/-.5000 Y .8500 (59.5°)
X +/-.5000 Y .8625 (59.9°)

Frame 4 Airdodge:

X +/-.5125 Y .8500 (58.9°)
X +/-.5000 Y .8500 (59.5°)
X +/-.5000 Y .8625 (59.9°)
X +/-.4875 Y .8625 (60.5°)
X +/-.4750 Y .8625 (61.2°)

If all of these instructions are followed, Peach will collide
with the stage on either frame 19 or 20 of this sequence. She
will then gain actionability on either frame 29 or 30, which will
last 9 or 8 frames respectively.

Of the three nerfed areas of the game within Section 5.2.9,
Peach’s ledgedash plays the biggest role in the B0XX’s design
rationale. Since X +/-.5000 Y .8500 (59.5°) (the airdodge
coordinates that would have been used in quadrants 1 and 2) are
now banned, the B0XX is forced to choose between X +/-.5500
Y .8250 (56.3°) and X +/-.4750 Y .8750 (61.5°) in order to keep
out of Peach’s ledgedash’s range. Given that 56.3° is an
unreasonably weak airdodge angle, I opted for 61.5° (and its
counterpart, 28.5°) within quadrants 1 and 2.

[5.3] Summary

Smash DI
Only 2 smash DI inputs can be performed during a hitlag window.

Pivot Tilts
Pivot U-tilt is removed / Pivot D-tilt (fast method) is removed.

Notch Integrity
Pivot UF-tilt is removed / Pivot DF-tilt (fast method) is

removed.

Dash Back Out of Crouch
The risk of a failed dash back out of crouch is incurred.

Y-Tilt + > 50°
Y-tilt + > 50° cannot be pinpointed.

Neutral-B Integrity
The risk of an accidental side-B is incurred.

Shield Drop Down
Shield drop down (fast method) is removed.

Lightshield
Only analog L/R 49 can be pinpointed.

Ambiguous DI
There are no ambiguous DI mixups.

Ice Climbers Desyncs
There are no Popo/Nana desync coordinates.

Wavedash
The shallowest/steepest airdodge angles are each kept 13.6° from
the respective perfect angles in quadrants 3 and 4. 30.5° and

59.5° are non-arbitrary airdodge angles that will be discussed in
Chapter 6.

Firefox

The shallowest/steepest Firefox angles are each kept 4.5° from
the respective perfect angles. 21.3° and 68.7° are non-arbitrary

Firefox angles that will be discussed in Chapter 7.

Other
Various obscure coordinates are illegal. Most notably, the

shallowest/steepest airdodge angles are each kept 11.7° from the
respective perfect angles in quadrants 1 and 2 in order to ban

Peach’s ledgedash.

[6] Wavedash Mechanics

From the beginning, 45° was the only airdodge angle set in stone.
With the shallowest/steepest airdodges angles in the game (as
well as anything near them) out of the question, I had two left
to find. These needed to be in the vicinities of 30° and 60°.

Given how subjective the act of choosing these airdodge angles
might seem, yet how directly they correlate with the B0XX’s
strength, I felt the need to study this area of the game
thoroughly. I kept my hopes up that the most important
coordinates on the entire controller would have some sort of
justification behind them. If not, the B0XX would forever remain
arbitrarily designed.

[6.1] The Ledge

My first instinct was to investigate the high tier characters’
(Fox/Falco/Sheik/Ice Climbers/Pikachu/Luigi) ledgedashes. This
isn’t as obvious with an analog stick, but digital inputs make it
easy to tell that airdodge angles have an impact on ledgedash
frame data.

As it turned out, I had a very shallow understanding of the ledge
all along. It is a mechanic with many subtleties I wasn’t
formerly aware of.

[6.1.1] Intangibility Thresholds

I first learned that, when ledgedashing, steeper airdodges cause
you to make contact with the floor faster. This means that
intangibility is inversely correlated with distance. Despite this
being overlooked by the scene at large, it is often better to
prioritize the former.

The frame Sheik will land on when she falls on frame 1, jumps on
frame 2, then airdodges at various angles on frame 9.

Sheik is unique in that her most intangible ledgedash requires an
extremely steep airdodge: => 59.5°. This allows her to maximize
her actionable frames by landing on frame 9 (if Sheik airdodges
at an angle shallower than 59.5°, she cannot land until frame 10
or later).

X +/-.5000 Y -.8500 (59.5°) are the last valid coordinates along
the rim for Sheik’s frame 9 ledgedash. I figured Sheik ought to
be able to land on frame 9 with the B0XX, so I went with these
coordinates. Even though this is a bit of a TAS airdodge angle
for Sheik, distance isn’t important in this particular case. The
purpose of her frame 9 ledgedash is intangibility, and nothing
else.

Intangibility thresholds exist for all characters who can
ledgedash, and are worth being aware of. Finding the B0XX’s final
airdodge angle, however, would require yet another discovery.

[6.1.2] Ledge Elevation

A little-known fact about the stages in Melee is that
ledgedashing is not uniform across them. This is because the
elevation of the stage relative to the ledge varies. For whatever
reason, the game developers made this decision. They also went on
to reuse certain ledge positionings.

Easier Stages (Ledge is Higher):

Harder Stages (Ledge is Lower):

Conveniently, half of the legal stages share an easier difficulty
(BF, DL64, and FoD have a higher ledge), while the other half
share a harder difficulty (FD, YS, and PS have a lower ledge). By
difficulty, I quite literally mean that certain ledgedash motions
will succeed on the easier stages and SD on the harder ones.

[6.1.3] Airdodge Angle

As far as the criteria that determine whether a ledgedash
succeeds or not goes, there are two components. The first is the
airdodge angle, which (usually) must be shallow enough to rise
above the stage. With this in mind, Fox’s frame data led me to
the final set of airdodge coordinates.

Fox’s frame 6 ledgedash consists of falling (without fastfalling)
for 2 frames, jumping on frame 3, then airdodging on frame 6.
This ledgedash requires a shallower airdodge angle than usual to
succeed. On the easier stages, Fox needs a <= 34.7° airdodge to
make it onstage. On the harder stages, he needs <= 30.5°.

Due to certain intricacies of the B0XX’s ledgedash methods, it is
mandatory that Fox is able to ledgedash on frame 6 on the harder
stages with this controller (it is overly difficult to ledgedash
with Fox otherwise). These intricacies will be explained in full
in Section 11.1.1, although you’ll probably figure out what they
are by the end of this chapter. For the time being, this means
Fox needs access to X +/-.8500 Y -.5000 (30.5°), the first angle
along the rim that enables this ledgedash.

[6.1.4] Jump Trajectory

The other component that the success of a ledgedash hinges on is
the horizontal trajectory of the midair jump. This is calculated
on the jump frame (as early as frame 2) of a ledgedash sequence.

To demonstrate this, I will analyze Fox’s frame 5 ledgedash.
X .7000 aerial drift/jump trajectory, and a 45° airdodge (X
+/-.7000 Y -.7000) will be used.

Frame 0:

Fox hangs from the ledge. Along Battlefield’s X-axis, he is
located at 70.32.

Frame 1:

Fox falls from the ledge. If he falls diagonally, he’ll advance a
small amount in that direction. In this case, he falls straight

down, which doesn’t result in any horizontal movement.

Frames 2, 4 & 5 (No Jump Trajectory):

On frame 2, Fox jumps, but he has failed to do so with horizontal
trajectory. He remains at 70.32.

On frames 3 and 4, Fox drifts at X -.7000, but this has a
negligible impact on his positioning. He only makes it to 70.13.

Then, on frame 5, Fox airdodges at 45°, but this results in a SD.

Frames 2, 4 & 5 (Jump Trajectory):

This time, Fox jumps at X -.7000 trajectory on frame 2. He has
already made it to 69.71.

By frame 4, he has made it to 69.31.

Then, on frame 5, the 45° airdodge makes it onstage.

In the first example, Fox sealed his fate on frame 2 when he
jumped without any trajectory. At that point, the 45° airdodge
couldn’t have succeeded. In the second example, Fox jumped with
trajectory. This brought him closer to the stage, granting him
more leniency on his airdodge angle. All characters’ ledgedashes
benefit from jump trajectory in this manner.

[6.2] Skill System

When designing the B0XX, I had to take all of the subtleties of
ledgedashing into consideration. This wasn’t just a matter of
choosing airdodge angles, but preserving the Gamecube
controller’s intrinsic challenges. So far, I have yet to show
parallels for some of these. For example, the stage a Gamecube
controller user is playing on should influence the airdodge angle
they attempt, as certain angles won’t work on every stage.
Similarly, the all-important role of jump trajectory on the B0XX
has neither been demonstrated, nor explored in full. Rest
assured, these subtleties are all intact.

[6.2.1] Difficulty

On the B0XX, the relationship between stage difficulty (ledge
elevation) and jump trajectory is preserved across the cast. To
demonstrate this, I’ll once again analyze Fox’s frame 5
ledgedash.

Frames 2 & 5 (Easier Stage / No Jump Trajectory)

On the B0XX, it is fine for Fox to jump without any trajectory
(on frame 2) on the easier stages.

He’ll need a single frame of horizontal drift (can be done as
late as frame 4), but he’ll still be able to make it onstage with

the 30.5° airdodge.

Frames 2 & 5 (Harder Stage / No Jump Trajectory)

On the harder stages, this isn’t the case. If Fox fails to jump
with trajectory, no matter how well he drifts from that point on,

he will die if he attempts a ledgedash on frame 5. For anyone
curious, a <= 28.8° airdodge would have been needed for Fox to

survive from this position.

Harder stages increase the risk of an unintentional ledge get-
up.

In summary: a Gamecube controller user can afford to steer clear
of ledge get-up (< 50° territory) on the easier stages because
jump trajectory isn’t as necessary. On the harder stages,
however, they should look to jump with trajectory in order to
reduce the shallowness needed on their airdodge. But in doing so,
the risk of an unintentional ledge get-up becomes very real.

On the B0XX, this challenge is preserved. The player must avoid
pressing Forward on the fall frame of a ledgedash*, otherwise,
they too will receive a ledge get-up. To perform your character’s
most intangible ledgedash with jump trajectory, you will have to
one-frame link the Forward press after falling (either frame 1
Down, frame 2 Down-Forward or frame 1 Back, frame 2 Forward).

*This one-frame link is only needed for < 50° ledgedashes. When
performing > 50° ledgedashes, you can ledgefall diagonally (see
Section 8.1.3).

[6.2.2] Distance

Not all ledgedashes that occur on the same frame are created
equal. Regardless of stage, there is always incentive to perform
a more skillful motion and jump with trajectory.

Fox’s Frame 5 Ledgedash (No Jump Trajectory):

If Fox jumps without trajectory, then airdodges at 30.5°, he only
makes it to 44.46 along Battlefield’s X-axis.

Fox’s Frame 5 Ledgedash (Jump Trajectory):

If Fox jumps with X 1.0 trajectory, he makes it to 43.25. This is
the best ledgedash the B0XX is capable of.

This extra 1.2 units along the X-axis equates to airdodging at a
~2° shallower angle, which, believe it or not, is meaningful. If
you take a close look at Fox’s feet, you’ll be able to tell that
jumping with trajectory caused him to travel further. This is a
prime example of why the B0XX’s wavedash mechanics had to be
fine-tuned so carefully. Seemingly small details like these can
make a difference.

Due to the variable that is jump trajectory, ledgedashing on the
B0XX is by no means static. Skill is always rewarded with longer
ledgedashes, and in some cases, more intangible ones.

[6.3] Traction Anomaly

There is one final aspect of Melee’s physics engine that is worth
mentioning.

Conventional wisdom has it that the shallower the airdodge, the
further the wavedash will travel. This is not universally true.
When a character’s velocity exceeds their maximum walk speed (a
seemingly unrelated stat), their traction is doubled, reducing
their effectiveness at sliding across the floor. For most
characters, this creates a breakpoint where certain angles aren't
shallow enough to make up for doubling the character’s traction,
resulting in a net loss in distance traveled. It is appropriate
that I use Fox to demonstrate this anomaly, since the airdodge
coordinates I’ve given the B0XX cause him to be impeded by it.

Fox’s maximum walk speed is 1.6 units/frame. His base traction is
.08. This means that if Fox’s velocity ever exceeds 1.6
units/frame, his traction will double to .16.

This is how far some of the shallower angles cause Fox to travel:

 X +/-.8375 Y -.5375 (32.7°) = 25.6 units
 X +/-.8375 Y -.5250 (32.1°) = 26.3 units
 X +/-.8500 Y -.5250 (31.7°) = 26.6 units
 X +/-.8500 Y -.5125 (31.1°) = 26.9 units

X +/-.8500 Y -.5000 (30.5°) = 25.8 units*
X +/-.8625 Y -.5000 (30.1°) = 26.0 units*
X +/-.8625 Y -.4875 (29.5°) = 26.4 units*
X +/-.8625 Y -.4750 (28.8°) = 26.8 units*

 X +/-.8750 Y -.4750 (28.5°) = 27.0 units

*Despite being shallower, these angles are actually worse than
the ones directly before them. This is because they cause Fox’s
velocity to exceed 1.6 units/frame, but not by enough to be worth
it. Here is a diagram of these gimped angles:

Interestingly, the first airdodge angle along the rim that
enables Fox’s frame 6 ledgedash on the harder stages (X +/-.8500
Y -.5000) is also the first one that doubles Fox’s traction. This
means Fox’s wavedash on the B0XX is a bit weaker than it would
seem (since the B0XX uses these coordinates). Whereas the
airdodge angle itself is 13.6° shy of perfect, Fox’s wavedash is
effectively 15° to 16° shy, since airdodges ~2° steeper than this
one cause him to travel further.

[7] Modifier Buttons

Modifier buttons are the glue that hold the B0XX together. They
are what make it viable to play Melee with a completely digital
controller. That being said, modifier buttons take up valuable
real estate, which is why one of my highest priorities was
needing as few of them as possible.

4 modifier buttons (and a WASD arrangement) is a no-go.

The downfall of most digital Melee controllers is the inclusion
of Modifiers 3 and 4. Though these might seem necessary at first,
the problems they cause are just as readily apparent. Like poison
to the controller, Modifiers 3 and 4 push other buttons out of
good locations only to station themselves in lackluster ones.
Then, they force you to memorize several new button combinations,
exacerbating an already uninviting lack of intuition.

From early on, I knew that the B0XX had to be kept to two
modifier buttons. Fortunately, two is all it needs. The secret is
to fill each of them to the brim with functionality.

[7.1] Modifier 1

When Modifier 1 is pressed in conjunction with the cardinal
directions, you will receive:

Horizontals: X +/-.7375*
Verticals: Y +/-.6500

Quadrants: X +/-.7375 Y +/-.2875

On the B0XX, both modifier buttons enable slight presses of all 4
cardinal directions as well as all 4 quadrants. This is their
most basic function.

Along the X-axis, Modifier 1 will produce X .7375. While X-tilt
spans up until X .7875, X .7375 is the upper extremity a digital
controller should use. This is because X .7375 is the greatest X-
value that does not break teeter, the mechanic that protects your
character from falling when they walk near the end of the stage.
X-values that do not exceed .7375 are therefore most efficient,
since they not only let you slight DI when thrown, but also
safely walk and perform tilts.

It is worth mentioning that X .7375 isn’t ideal for intentionally
teetering (to set up a teeter-drop, for example). The best way to
do that is to initiate walk (X-tilt), then immediately release
the modifier button to continue walking at X 1.0 (maximum) speed.
This allows you reach the end of the stage as fast as possible.

*Modifier 1 won’t always cause the horizontals to be modified to
X .7375 (see Section 7.3).

Along the Y-axis, the only worthwhile modification is Y .6500.
The lower extremity (Y .2875) is obsolete in comparison, since it
causes you to stand up from crouch (Y => -.6125), performs
neutral-B (|Y| <= .5375) instead of vertical-B, etc.

Within the quadrants, Modifier 1 will produce X .7375 Y .2875. X
is kept consistent with the horizontals so that alternating the
horizontals and quadrants doesn’t awkwardly change your movement
speed, while Y is given the non-arbitrary value of .2875. These
coordinates allow you to point in < 50° territory and perform
various techniques, such as UF/DF-tilt and the shallowest Firefox
angle. In particular, it was imperative for me to assign this
side of the 50° line to the modifier button in the best resting
position for the user’s left thumb. This is because Modifier 1
enables the 30.5° wavedash, making it the most important modifier
button. I will explain how it does this in Section 8.3.3.

Lastly, when pressed in conjunction with the L button, Modifier 1
(or Modifier 2) will produce analog L 49.

[7.2] Modifier 2

When Modifier 2 is pressed in conjunction with the cardinal
directions, you will receive:

Horizontals: X +/-.2875*
Verticals: Y +/-.7375

Quadrants: X +/-.2875 Y +/-.7375

Originally intended to mirror Modifier 1, Modifier 2 is a watered
down version of what it could have been. Within the quadrants,
Modifier 2 is banned from pinpointing Y-tilt + > 50°, and must
settle for pinpointing Y-smash + > 50° instead. Still, this is
useful for performing turnaround U-tilt in buffered situations (Y
<= -.7000 will cause crouch and prevent turnaround D-tilt). In
the cardinals, X +/-.2875 usually serves as another slight DI
option, while Y +/-.7375 is chosen for the sake of symmetry with
Modifier 1 (this allows Modifier 2 to enable the steepest Firefox
angle).

*Modifier 2 won’t always cause the horizontals to be modified to
X .2875 (see Section 7.3).

[7.3] Horizontal Modification Conditionals

While this mechanic is neither a macro nor a button bind, it
still falls under a separate category. On the B0XX, the 2
modifier buttons don’t always modify the horizontals to
X .7375/.2875. Instead, they present the option to modify the
horizontals when doing so would be useful (based on the number of
horizontals currently held). Without this mechanic, the modifier
buttons’ X-axis modification can actually be a hindrance in
certain scenarios.

Only the horizontals are subject to this mechanic (the quadrants
are exempt). This is also the only instance on the entire
controller of an overriden cardinal mattering (if 2 horizontals
are held).

1 Horizontal Held

X is modified to .7375/.2875. If only 1 horizontal is held, this
will always match the player’s intention.

2 Horizontals Held

X is not modified (it remains 1.0). This is because when 1
horizontal is already held, modifying the second horizontal is
almost always unwanted.

The best example would be ledgedashing with Modifier 1. Modifier
1 enables the 30.5° wavedash, meaning it’s safe to assume the
player’s intention is to travel as far as the B0XX permits. In
this situation, an experienced B0XX user would want to jump with
X 1.0 trajectory to gain as much distance as possible, but
Modifier 1’s modification to X .7375 would normally interfere. By
making it so that the modifier buttons do not cause an X-axis
modification when the second horizontal is pressed, the option to
press Back to fall from the ledge, Forward (X 1.0) + jump, then
Down-Forward + airdodge is no longer arbitrarily compromised.
This is the most difficult (and rewarding) ledgedash motion that
can be performed on the B0XX.

Modifier is Pressed When 2 Horizontals are Already Held

As mentioned in Section 2.2.3, this is the first of two instances
of order-dependency on the B0XX. It is implemented to account for
the one scenario in which the player would want to modify the X-
axis while (already) holding 2 horizontals: pivot F-tilt.

In Section 5.1.2, I showed the best pivot F-tilt method on the
Gamecube controller. This method involves flick pivoting,
followed by pressing A while the stick is in X-tilt during its
return. Since digital inputs do not traverse X-tilt upon release,
they cannot use this method, which means they need an
alternative.

This alternative is dashing twice, followed by modifying the X-
axis to X-tilt (valid territory for the pivot as well as the F-
tilt). In order to support this sequence without compromising the
ledgedash sequence shown a moment ago, this X-axis modification

will only occur if a modifier button is pressed when 2
horizontals are already held.

Even without this interaction, the B0XX would still be able to
perform pivot F-tilt (since X-tilt would still be producible by
holding 1 horizontal). This interaction merely makes it so that
you do not have to arbitrarily release the second horizontal in
order to do so. The B0XX should recognize that whenever a
modifier button is pressed after a horizontal, the player’s
intention is always to modify the X-axis to X-tilt.

[8] Non-Dedicated Modifiers

Squeezing as much functionality as possible into Modifiers 1 and
2 was only the first step. The real breakthrough that kept the
number of modifier buttons on the B0XX to two was allowing A/B/C/
L/R/X/Y/Z to possess modifier properties. I realized this was a
necessary feature when I couldn’t find ways to accommodate
certain coordinates with two modifier buttons alone, but I
couldn’t crowd the layout of the controller, either. At that
point, the solution was to use existing buttons to pinpoint the
remaining coordinates the B0XX needed. This removed the need to
install additional modifier buttons.

Once I established that non-dedicated modifiers were necessary in
some capacity, I quickly realized that A/B/C/L/R/X/Y/Z's action
input had to remain actuated at all times (even while the button
served as a non-dedicated modifier). At first, I experimented
with the A/B/C/L/R/X/Y/Z buttons influencing the analog X/Y-
coordinates without generating an action input at all (just like
modifier buttons). This seemed like the obvious way to
accommodate the coordinates the B0XX needed without turning
A/B/C/L/R/X/Y/Z into action-direction button binds, but it
resulted in several sources of conflict. Most notably, it had
become possible to “flub” certain action inputs if the buttons
they interacted with were being held. For example, if Up + Left +
Modifier 2 were held and C-Up was pressed with the intention of
U-smashing, the B0XX would interpret this as an attempt to angle
Firefox and fail to generate a C-Up input. I dismissed this idea
almost as it came for this reason alone.

The need to accommodate niche coordinates without compromising
their corresponding action inputs led to my next epiphany:
action-direction button binds didn’t have to be harmful.
Modifiers already weren’t allowed to generate an Up, Down, Left,
or Right input on their own, which took most of the concerns
raised by action-direction button binds out of the picture (i.e.
U-tilt button, Shine button, etc.). This meant that the remaining
concerns laid within the cardinals and quadrants themselves.
Melee’s coordinate plane was bound to have more than just eight

meaningful thresholds (4 cardinals/4 quadrants); however, if I
could manage to define the rest of these thresholds and deem it
illegal for non-dedicated modifiers to traverse them, then the
concerns raised by action-direction button binds would be fully
alleviated. At that point, the B0XX’s “action-direction button
binds” would merely be buttons that interchangeably served as
action inputs or directional inputs, but never both at the same
time in a meaningful way. This would allow the controller to
operate on the minimum # of buttons possible, a quality of life
improvement that cannot be overstated.

[8.1] Restrictions

This section will define the thresholds within the cardinals and
quadrants that dictate what constitutes meaningful execution, and
then deem it illegal for non-dedicated modifiers to traverse
them. For the most part, this means paying respect to the zones
of the grid I covered in Section 3.2.

[8.1.1] Jump Trajectory Integrity

Of the four non-dedicated modifier restrictions, this is the only
one that pertains to an aspect of Melee’s analog control rather
than specific zones of the coordinate plane. Since the X and Y
buttons are directly tied to jump trajectory, allowing them to
serve as non-dedicated modifiers can only lead to disingenuous
behavior (i.e. jumping with a different X-value than your current
walk/run speed). For this reason, it is illegal for the X and Y
buttons to serve as non-dedicated modifiers.

[8.1.2] Tilt/Smash Integrity

X .8000 and Y .6625 serve as the dividing lines for many
techniques. As a result, manually entering, then leaving these
zones is commonly required. I will use fastfalling (Y <= -.6625),
followed by wavelanding with two different airdodge angles to
illustrate the importance of the tilt/smash thresholds.

Fastfalling, then wavelanding with airdodge coordinates that
contain Y <= -.6625 can be performed with a single stick motion.

Wavelanding with Y > -.6625, however, requires Y -.6625 to be
manually traversed with a second stick motion. This concept
applies to various techniques along either axis.

The B0XX must respect these thresholds as well. A/B/C/L/R/Z may
not cause the analog stick to traverse X .8000 or Y .6625 in a
manner that meaningfully circumvents having to perform a stick
motion. The clause at the end is included because several of the
non-dedicated modifiers can traverse the tilt/smash thresholds in
situations where they are of no relevance (i.e. angling up-B).

[8.1.3] 50° Line Integrity

The division caused by the 50° line is most notable for dictating
what constitutes genuine ledgedash behavior.

When attempting to ledgefall with the Gamecube controller, < 50°
territory must be avoided (as it will cause regular get-up). >
50° territory, however, is valid for a ledgefall. This means that
a > 50° ledgedash (ledgefall -> jump -> airdodge at > 50°) can
all be performed with a single stick motion.

Ledgedashing at < 50°, however, requires the 50° line to be
manually traversed with a second stick motion.

As far as the B0XX goes, this means that pointing in > 50°
territory must be paired with actions that are in > 50° territory
as well (and vice versa). In other words, A/B/C/L/R/Z may not
cause the analog stick to traverse the 50° line in a manner that
meaningfully circumvents having to perform a stick motion.

This diagram embodies 50° Line Integrity. The two green sequences
are examples of valid ledgedash motions: the player ledgefalls in
either west, southwest, or south, then manually points at
southeast in order to airdodge at < 50°. The red sequence is an
example of an illegal ledgedash: the player ledgefalls in
southeast, then, the L/R button (airdodge) automatically
traverses the 50° line for them.

[8.1.4] Down-B/Side-B Integrity

Pointing in either down-B or side-B territory means being unable
to perform certain other actions. This usually isn’t relevant
(since most special moves are not cancellable), except for with
Fox and Falco’s Shine.

If you want to Shine, then wavedash at an angle in down-B
territory, a single stick motion will do the job.

However, if you want to Shine, then wavedash at an angle in side-
B territory, a second stick motion will be needed; therefore, if
pressing the B button would produce a down-B, A/C/L/R/Z may not
redirect the analog stick to side-B territory (and vice versa)*.

*The only exception to this rule is shield (not airdodge)
pointing at ~45° regardless of the sitation. This is because the
B0XX cannot support a variety of shield angles.

[8.2] Definitely Not Action-Direction Button Binds

With Section 8.1’s rules in effect, there is very little that
non-dedicated modifiers can still do. Nonetheless, they are
needed to tap into a few aspects of Melee’s analog control.
Section 8.2 covers cases in which it is not only irrelevant, but
strictly disadvantageous that A/B/C/L/R/Z must be actuated in
order to prompt its corresponding directional modification. These
action inputs are inconsequential, however, since your character
isn’t actionable in any of these situations.

[8.2.1] Firefox

To angle Firefox (and other up-B’s), two modifications must be
made to the diagonal directional inputs. First, Modifier 1 or 2
is used to denote whether the X or Y-axis is being hugged (this
also produces the shallowest/steepest Firefox angle). Then, the
C-stick buttons allow you to choose from four additional angles
approximately 4.6° apart from each other.

Firefox Angles:

Modifier 1: X +/-.7375 Y +/-.2875 (21.3°)
Modifier 1 + C-Down: X +/-.7750 Y +/-.3750 (25.8°)
Modifier 1 + C-Left: X +/-.7875 Y +/-.4625 (30.4°)
Modifier 1 + C-Up: X +/-.6625 Y +/-.4625 (34.9°)

Modifier 1 + C-Right: X +/-.6375 Y +/-.5250 (39.5°)

Modifier 2 + C-Right: X +/-.5875 Y +/-.7125 (50.5°)
Modifier 2 + C-Up: X +/-.5500 Y +/-.7875 (55.1°)

Modifier 2 + C-Left: X +/-.4625 Y +/-.7875 (59.6°)
Modifier 2 + C-Down: X +/-.3875 Y +/-.8000 (64.2°)

Modifier 2: X +/-.2875 Y +/-.7375 (68.7°)

These coordinates were obtained through the use of a program that
accounted for several restrictions:

-Coordinates in Y-tilt + > 50° territory are illegal. Y -.6625,
-.6750, and -.6875 are also illegal.

-Coordinates that cause Ice Climbers desyncs are illegal.

-These coordinates do not contain X => .8000, which means they
cannot be exploited to perform dash back out of crouch.

-None of these coordinates are in neutral-B territory (so that
Neutral-B Integrity is automatically enforced).

-None of these coordinates are in the sections of the grid that
shift between side-B and vertical-B depending on whether your
character is airborne or grounded (so that pressing B results in
a consistent outcome).

-All of these coordinates are on the appropriate side of the 50°
line (< 50° for Modifier 1 and > 50° for Modifier 2). X +/-.5875
Y +/-.7125 (50.5°) are the closest coordinates to the 50° line
that Modifier 2 can use. X +/-.6375 Y +/-.5250 (39.5°) were
chosen afterwards for symmetrical purposes.

[8.2.2] Slight DI

Normally, Modifiers 1 and 2 will modify the horizontals to
X .7375 and .2875 respectively. To access X .5875 and .4375, hold
the A button as well. These coordinates will still produce an F-
tilt in the neutral game, but they’ll let you DI less predictably
when being thrown.

[8.3] Sort of Action-Direction Button Binds

In Section 8.2, there was no relationship between the action
inputs and their corresponding directional modifications. C
(Firefox) and A (slight DI) were entirely chosen based on their
button locations.

In Section 8.3, this is not the case: these modifications are
prompted by action inputs that directly need them to occur. While
this is worth distinguishing, it ultimately doesn’t make a
difference. The ability to influence the analog X/Y-coordinates
as needed without circumventing meaningful execution remains
consistent with these modifications.

All of the modifications within this section pertain to the L and
R buttons, which are inherently problematic for digital
controllers. Since shielding, wavedashing, and airdodging
defensively – three very different techniques – are all linked to
these buttons, several interactions must be created in order for
the B0XX to offer its user the correct options to choose from.

[8.3.1] Shield Tilt (Automatic)

Shield tilt can always occur up until the thresholds for roll,
spotdodge, and tap jump, meaning |X| <= .6875 with |Y| <= .6500
is always valid. On the ground floor specifically, shield can be
tilted down to Y -.6875, since shield drop cannot be performed.

With digital inputs, making the most of shield tilt requires two
separate features. This section will focus on automatic shield
tilt, which looks to correct the B0XX’s default quadrant
coordinates of X +/-.7000 Y +/-.7000. These coordinates are
strictly undesirable when shielding because they’ll cause tap
jump or spotdodge. Had the player intended to perform these
actions, they would have simply pointed in a cardinal direction;
therefore, it is redundant for the quadrants to perform them. The
L button will make these corrections, as it is the B0XX’s primary
shield trigger. Z is sometimes useful as a shield, so it will
make these corrections as well.

When L or Z is pressed in conjunction with quadrant 1 or 2, you
will receive:

X +/-.7500 Y .6500*

Automatic shield tilt is intended to be used in situations where
your ability to roll has been shut off (i.e. dashing then
buffering a shield horizontally). Since these situations
encompass the vast majority of those that call for shield tilt,
automatic shield tilt is usually all you need. In quadrants 1 and
2, the values X +/-.7500 Y .6500 are obtained by maxing out the
Y-axis (such that it does not cause tap jump), followed by the X-
axis. Because we’re operating under the assumption that roll has
been shut off, it is fine for X to be equal to or greater
than .7000.

*L in conjunction with quadrant 1 or 2 won’t always produce X
+/-.7500 Y .6500 (see Section 8.3.4).

When L or Z is pressed in conjunction with quadrant 3 or 4, you
will receive:

X +/-.7250 Y -.6875

In quadrants 3 and 4, it is best for shield to default to Y
-.6875. Not only does this Y-value avoid spotdodge on the ground
floor, but it also causes shield drop on platforms. From there,
the X-axis is maxed out. These coordinates (X +/-.7250 Y -.6875)

comply with the shield drop down nerf from Section 5.2.3, which
stated that all shield drop Y-values on the B0XX needed to be
paired with roll X-values.

For transparency’s sake, there is a small complication involving
the coordinates X +/-.7250 Y -.6875 that has to do with the
dynamics of notches (precision, physical construction, etc.) as
explained in Section 5.1.3. Based on the logic conveyed within
that section, one could make the argument that pinpointing shield
drop in quadrants 3 and 4 requires a degree of precision that is
only permissible if the B0XX opts to use its SW/SE “notches” on
one of shield drop’s 3 Y-values. To be exact, this is to say that
the B0XX should be able to pinpoint either Y -.6625 through
-.6875 (shield drop) or Y -.7000 through -.7500 (jab cancel), but
not both. Therefore, L and Z modifying to Y -.6875 (shield drop)
is problematic, since the B0XX is already capable of pinpointing
X +/-.7000 Y -.7000 (jab cancel). This argument would have been
sound, had the B0XX been geared for vanilla Melee.

On UCF, shield drop and jab cancel overlap.

As shown in the diagram, an unavoidable consequence of UCF’s
modified shield drop range is shield drop overlapping with jab
cancel, making it possible to notch for both techniques on the
same controller. This is one of the more subtle ways in which UCF
surpasses traditional Gamecube controller hardware.

Under these circumstances, Y -.6625 through -.6875 are reduced to
generic shield tilt coordinates, as they are no longer needed for
shield drop. It is, therefore, fine for the B0XX to retain X
+/-.7000 Y -.7000 (jab cancel/UCF shield drop) as its unmodified
quadrant values while modifying to X +/-.7250 Y -.6875 when L or
Z is held (to avoid spotdodge). To put this in perspective: had
UCF not been the tournament standard, the B0XX would have had to
use X +/-.7250 Y -.6875 as its unmodified quadrant values in
order to retain shield drop, at which point it would not have
been able to jab cancel.

[8.3.2] Shield Tilt (Manual)

Manual shield tilt, which completes the shield tilt duo by
blocking actions such as roll, spotdodge, and shield drop, is far
less straightforward to implement than its counterpart. In a
perfect world, either Modifier 1 or 2 would have performed manual
shield tilt, but they are both occupied with analog L 49. To make
matters worse, most non-dedicated modifiers aren’t viable
candidates. Unlike Firefox (C) and slight DI (A), manual shield
tilt is performed in situations where your character is
actionable; therefore, if A/B/C/X/Y was required for manual
shield tilt, its action input would surely conflict. This leaves
R as the only eligible button for manual shield tilt, since its
action input is a shield itself.

The first thing to know about manual shield tilt is that R’s
modifications will override L and/or Z’s if R is held alongside
them. Since manual shield tilt’s coordinates are by all means
secondary to those of automatic shield tilt, the intention to use
manual shield tilt is clear whenever R is held. Giving R priority
allows it to not only serve as a tilted shield on its own, but
also a “modifier button” of sorts when used with L or Z.

Having to press Up and R at once would have been poor design.

The second thing to know about manual shield tilt is that it
cannot be performed in north, quadrant 1, or quadrant 2. These
three sections of the grid could have been supported, but I chose
not to do so due to Up and R being on separate rows. From a
design standpoint, it would have been a mistake to encourage the
player to tilt their wrist diagonally to simultaneously press
these buttons. Conveniently, shield tilt in north is useless,
while automatic shield tilt suffices for quadrants 1 and 2 in
almost every situation.

When R is pressed in conjunction with Left or Right and no
modifier buttons are held, you will receive:

X +/-.6875 Y 0

Of R’s three manual shield tilt modifications, this one is most
straightforward: X +/-.6875 avoids roll in the horizontals.

When R is pressed in conjunction with Down and no modifier
buttons are held, you will receive:

X 0 Y -.6500

Aside from avoiding spotdodge, X 0 Y -.6500 allows you to perform
a hidden shield drop method that I mentioned briefly in Section
5.2.3. By tilting shield downwards in Y-tilt (the light gray
area) for 4 frames, the entirety of spotdodge (pink) will turn
into shield drop on specifically frames 5 and 6. While there
isn’t much reason to use this method over the “Axe method,”
it is still nifty that the B0XX is able to accommodate it.

When R is pressed in conjunction with quadrant 3 or 4 and no
modifier buttons are held, you will receive:

X +/-.6500 Y -.6500

Even though the ideal set of coordinates to use within quadrants
3 and 4 is X +/-.6875 Y -.6500 (since X can extend up
until .6875), X +/-.6500 Y -.6500 is used so that R can produce a
45° vector. This is an unnoticeable hindrance to manual shield
tilt that allows R to excel at its other duties (these are
wavedash-related; see Section 8.3.3). As far as manual shield
tilt goes, these coordinates allow you to tilt your shield
diagonally downwards on a platform without shield dropping.

Throughout this section, you may have noticed that manual shield
tilt does not occur when either Modifier 1 or Modifier 2 is held.
The primary reason for this is holding an analog trigger and a
digital trigger at once causes the digital trigger to take
priority. Since manual shield tilt is tied to digital R, a
digital shield would always override analog L 49 and defeat the
purpose of tying them to this feature.

[8.3.3] Wavedash

The altered wavedash angles (30.5° especially) are the most
frequently used modifications on the B0XX. As with everything
else in this chapter, the goal is to incorporate these angles in
a manner that doesn’t involve installing additional buttons.
Since there are two non-45°* angles and two modifier buttons to
work with, achieving this is relatively straightforward.

Modifier 1 is associated with < 50° territory, and Modifier 2 is
associated with > 50° territory, which makes distributing the
30.5° and 59.5° wavedashes easy enough. The only complication
stems from the fact that the modified quadrants have to preserve
certain X and Y coordinates (+/-.2875 and +/-.7375) in order to
perform other duties. Since the wavedash angles don’t consist of
these coordinates, another modification must be prompted by their
action button: R.

*As shown in Section 8.3.2, R (in conjunction with no modifier
buttons) modifies the analog X/Y-coordinates from X +/-.7000 Y
-.7000 to X +/-.6500 Y -.6500 on its own so that it can assist
with shield tilting in addition to wavedashing at 45°.

When the modifier buttons and R are pressed in conjunction with
quadrant 1, 2, 3 or 4, you will receive:

Modifier 1: X +/-.8500 Y .5000 (30.5°)* ** (pictured)
Modifier 2: X +/-.5000 Y .8500 (59.5°)**

At first glance, this would appear to be a blatantly disingenuous
action-direction button bind; however, looks can be deceiving.
Once this diagram is viewed from the perspective of what these
coordinates actually do, it is clear that there was no
directional modification of any significance.

*These coordinates cannot be exploited to perform dash back out
of crouch because the R button will generate a shield.

**These coordinates aren’t used in quadrants 1 and 2. X +/-.8750
Y .4750 (28.5°) and X +/-.4750 Y .8750 (61.5°) are used instead
(see Sections 5.2.9 and 8.3.4)

Theoretical coordinates the B0XX could have used.

When an airdodge is calculated, the magnitudes of X and Y are
ignored (only the angle between them is relevant). This means
that, in theory, Modifier 1 could have given coordinates that
produce a 30.5° vector, point in X-tilt + Y-tilt territory, and
walk at X .7375 to begin with. X +/-.7375 Y +/-.4375, for
example, satisfies all of this criteria (its wavedash angle is
30.6°, but that’s besides the point). These coordinates can
therefore be considered the analog stick’s effective location
whenever the modified quadrants (with or without R) are
pinpointed on the B0XX.

I opted not to use coordinates like X +/-.7375 Y +/-.4375 for the
sole purpose of design elegance. Wavedashes are usually performed
with the analog stick pressed against the rim, which I wanted the
airdodge coordinates I gave the B0XX to stay true to (not to
mention how ridiculous testing all the coordinates that aren’t
along the rim would have been). I also wanted the raw modified
quadrants to contain X or Y +/-.2875, as hugging the X or Y-axis
seemed least arbitrary. R’s modifications should be understood as
a small touch I gave the controller so that it could consist of
relatable coordinates like these. As far as gameplay goes, they
do not make a difference.

[8.3.4] Home Row Upwards Airdodge

Throughout Section 8.3.3, it was implied that R was only meant to
be used for wavedashing (which pertains to airdodging in quadrant
3 or 4 specifically). This may have come across as an oversight,
but it was very much intentional. While R does cause its
modifications in quadrants 1 and 2, these modifications are only
meant to restrict the B0XX’s airdodges to less shallow/steep
angles (X .7375 Y .2875 and X .2875 Y .7375 would have airdodged
at 21.3° and 68.7° respectively). As far as actually performing
upwards airdodges goes, using R is discouraged.

Once again, this is because it would have been a mistake to
formally support the simultaneous use of buttons that are on
different rows with the same hand. R was placed in this location
because the index finger’s strength is needed for swift and
accurate wavedashes (similar reasoning went into B’s placement).
When it comes to upwards airdodges, R is unideal.

L, on the other hand (no pun intended...), is in a great
location for upwards airdodges.

The potential to correct this design flaw lies in the L button,
which is in an eligible location for upwards airdodges. The only
hurdle is that analog L 49 and automatic shield tilt cannot be
compromised in the process. In order for L to accommodate upwards
airdodges while preserving the rest of its interactions, the
second and last instance of order-dependency is needed.

As to comply with the Peach’s ledgedash ban from Section 5.2.9,
the goal is to give the B0XX the ability to comfortably airdodge
at 28.5°, 45°, and 61.5° in quadrants 1 and 2. For the L button
to make this possible, it must adjust for these duties when it is
pressed after Up (this is inclusive of a simultaneous Up + L
press). Since directional airdodges can only be performed by
pressing L/R after (or alongside) the directional input, these
adjustments will always match the player’s intention to airdodge.

This means that the only drawbacks to L’s adjustments involve
shielding (with L) and shield tilting in quadrant 1 or 2 on
specifically the same frame. Due to the inclusiveness of “after”
inputs, the B0XX can mistakenly interpret quadrant 1/2 + L on the
same frame as an upwards airdodge when the intention was to
shield tilt. Luckily, there is a way to heavily mitigate this
interference when it occurs.

When L is pressed in conjunction with no modifier buttons and
quadrant 1 or 2 and Up is already held, you will receive:

X +/-.6500 Y .6500 (45°)

Once again, X +/-.6500 Y .6500 are invaluable in that they are
compatible with airdodge and shield. These coordinates not only
allow an upwards airdodge to take place at 45°, but they also
nullify the most common occurrence of the same-frame shield tilt
interference. When a digital shield is simultaneously actuated
and tilted in quadrant 1 or 2, the only consequence is pointing

at slightly less optimal coordinates (X +/-.6500 Y .6500 instead
of X +/-.7500 Y .6500). This is unnoticeable.

When L is pressed in conjunction with Modifier 1 and quadrant 1
or 2 and Up is already held, you will receive:

Digital L + X +/-.8750 Y .4750 (28.5°)

Aside from the airdodge angle being modified to 28.5°, L will now
produce a digital press (for airdodge) instead of analog L 49.

This time around, the drawbacks to the same-frame shield tilt
interference are more severe, since this outcome is radically
different from the expected lightshield. Due to the infrequency
of tilting a lightshield in quadrant 1 or 2 (let alone
simultaneously), however, this isn’t a concern.

When L is pressed in conjunction with Modifier 2 and quadrant 1
or 2 and Up is already held, you will receive:

Digital L + X +/-.4750 Y .8750 (59.5°)

Again, L will produce a digital press (instead of L 49), and the
airdodge angle is modified to 59.5° as expected. The same-frame
shield tilt interference is infrequent to the point that it isn’t
a concern.

[8.4] Summary

Jump Trajectory Integrity
The X and Y buttons cannot serve as non-dedicated modifiers.

Tilt/Smash Integrity
Non-dedicated modifiers cannot traverse X .8000 or Y .6625 in a

manner that meaningfully circumvents a stick motion.

50° Line Integrity
Non-dedicated modifiers cannot traverse the 50° line in a manner

that meaningfully circumvents a stick motion.

Down-B/Side-B Integrity
If the B button would yield a down-B, non-dedicated modifiers
cannot redirect the analog stick to side-B territory (and vice

versa).

Firefox
Modifiers 1 and 2 are used to hug the X or Y-axis. The C-stick

buttons are then used to angle Firefox.

Slight DI
Modifiers 1 and 2 in conjunction with the horizontals will

normally produce X .7375/.2875. To access X .5875/.4375, hold the
A button as well.

Shield Tilt (Automatic)
L and Z correct the quadrant coordinates so that they default to

shield tilt (and shield drop).

Shield Tilt (Manual)
R allows you to shut off roll, spotdodge, and shield drop.

Wavedash
Strictly for aesthetic purposes: R modifies Modifier 1 and 2’s

quadrant values to wavedash coordinates along the rim.

Home Row Upwards Airdodge
L allows you to comfortably airdodge upwards (without having to

tilt your wrist diagonally to press R).

[9] Other Interactions

[9.1] UF/DF-Smash

X-smash + Y-tilt is UF/DF-smash territory on both the analog
stick and C-stick.

Throughout this document, I failed to show a way to pinpoint the
regions where X-smash overlaps with Y-tilt (aside from
Firefox/airdodge angles, which require C/L/R to be actuated).
This is because the B0XX does not possess one. These parts of the
grid are responsible for very few functions: they can be used to
dash/run with ASDI down, but the C-stick is better for that. They
can also be used to guarantee that dash back out of crouch
succeeds, but that was banned in Section 5.1.4. The only
technique the B0XX truly needs these regions for is UF/DF-smash,
which can be performed by 8 characters in the game. Even still,
neither Modifier 1 nor 2 can afford to accommodate these regions,
as the ones they pinpoint are more important. This leaves the
option of using the C-stick to perform UF/DF-smash.

With the analog stick, the B0XX inherently has to hold two
cardinal directions in order to produce diagonal vectors. Due to
the long list of techniques the analog stick has to do with
(smash DI comes to mind), it is essential that this remains true.
With the C-stick, however, we can afford to break this rule since
there is nothing remotely exploitative that could result from
doing so. This is especially necessary considering the
arrangement of the C-stick buttons; since they are meant for the
right thumb, having to press two of them at once isn’t ideal.

To prompt these diagonal C-stick vectors, Modifier 1 must first
be held in conjunction with Up or Down on the analog stick. This
will produce X 0 Y +/-.6500, which won’t inform your opponent
that you are pointing in either direction (since these
coordinates cause neither tap jump nor crouch). Then, press C-
Left or C-Right. Instead of the usual C X +/-1.0 Y 0, this will
produce C X +/-.8125 Y +/-.2875, which are valid coordinates for
UF/DF-smash. These coordinates comply with the restrictions on
Popo’s F-smash desync, and the 4th/5th F-smash angles.

[9.2] D-Pad

When Modifiers 1 and 2 are held simultaneously and the C-stick
has yet to be actuated, the C-stick transforms into the D-pad.
Holding Modifiers 1 and 2 simultaneously also shuts both of their
directional, analog L, and C-stick modifications off.

[10] B0XX Advantages

[10.1] Travel Time

Most of the remaining advantages on the B0XX stem from the
ability to press certain arrow keys in succession without
experiencing physical recoil. These can fall under:

-Cardinal/diagonal to diagonal. The B0XX can perform these inputs
on frame 1 then 2. This is 100% unremovable, since any sort of
timing-based lockout would conflict with the ability to perform
basic functions that involve pointing in the quadrants.

-Cardinal to opposite cardinal. The B0XX can perform these inputs
on frame 1 then 2 as well. Even though this sequence could have
been toned down through the use of lockouts, I opted not to do so
for a few reasons. For one, unlike the SDI nerf (which bans the
3rd SDI input for 6 frames in order to fill up <= 9 frame hitlag
windows), enforcing a lockout on opposite cardinals would have
been arbitrary, since there isn’t a definitive number of frames
in this case. Furthermore, enforcing a lockout would have been
overkill. Whereas the SDI nerf completely disincentivizes the
button sequence it targets, an opposite cardinal lockout would
have incentivized performing a button sequence as quickly as
permitted. This would have caused the player to compete against
their own controller’s lockouts, an entirely artificial
diversion.

It should also be noted that all of the aforementioned sequences
are risky to attempt so quickly (frame 1 then 2), as they won’t
be sequences at all if both arrow keys are input on the same
frame. Frame 1 then 3 generally gives much better risk/reward.

Lastly, the following analog stick motions/difficulties should be
kept in mind for Sections 10.1.6, 10.1.7, 10.1.8, and 10.1.9:
-Frame 1 West (X -1.0), Frame 5 East (X 1.0): Easy
-Frame 1 West (X -1.0), Frame 4 East (X 1.0): Difficult
-Frame 1 West (X -1.0), Frame 3 East (X 1.0): Humanly unrealistic
-Frame 1 West (X -1.0), Frame 2 East (X 1.0): Impossible

[10.1.1] Quarter-Circle Smash DI

With an analog stick, quarter-circle SDI inputs should take place
on frame 1 then either 3 or 4. With digital inputs, frame 1 then
2 is possible. This can sometimes result in an additional SDI
input within a hitlag window. For example, if a 9-frame hitlag
window was about to expire, it would be possible for digital
inputs to squeeze in two SDI inputs on frames 8 and 9, whereas an
analog stick would only able to perform one SDI input (on frame 8
or 9).

An image of in-game “units” (for reference):

Furthermore, the B0XX is guaranteed to receive SDI inputs of 1.0
within the cardinals, and .7000 within the quadrants. This means
quarter-circle SDI inputs will always cause your character to
travel 10.2 units in the desired direction (SDI = X or Y * 6. 1.7
* 6 = 10.2).

On the Gamecube controller, it is possible to receive SDI inputs
less than 1.0 within the cardinals. Since the formula for a valid
SDI input is X^2 + Y^2 => .7125, it is possible for the cardinal
to generate an SDI input between .7125 and .9875 (depending on
when your controller is polled). 1.0 is the most frequent
outcome, however, due to the velocity the analog stick
accumulates causing it to traverse .7125 through .9875 rather
quickly. The subsequent diagonal SDI input is also almost always
greater than .7000.

[10.1.2] Wiggle

When your character is airborne and in tumble, you must first
wait for hitstun to expire. Then, to regain actionability, one of
several options can be chosen. Aerials, special moves, and jumps
will break your character out of tumble 100% of the time.
Wiggling, on the other hand, is unreliable with an analog stick.

To perform a wiggle, the analog stick must skip from the deadzone
to X-smash without being polled in X-tilt. X 0 -> X 1.0, for
example, will successfully wiggle, while X 0 -> X .7875 -> X 1.0

will fail to wiggle. Since polling sequences like these are
impossible to account for, it is usually better to break out of
tumble by performing an aerial, special move, or jump with the
Gamecube controller.

These options (jump especially) are usually adequate, however,
there are a few situations where a wiggle specifically is the
best choice. For example, jumping then airdodging consumes your
double jump, whereas wiggling then airdodging preserves it. A
wiggle can also be used to prevent yourself from having to tech
on a platform, or to enable grabbing the ledge.

Since digital inputs skip directly from X 0 to X 1.0, they make
wiggling a reliable option.

[10.1.3] Samus’ Short Hop Fastfall Missile

Digital inputs make it easier to fastfall on frame 1 then side-B
on frame 2. This is strictly relevant for Samus, who only has a
2-frame window to perform short hop fastfall missile.

[10.1.4] Dr. Mario’s Reverse Up-B Cancel

Dr. Mario’s up-B cancel can be used to cause a ledgesnap (can be
done facing either direction).

While Dr. Mario has a few up-B cancel variants, his reverse up-B
cancel is particularly troublesome. To perform the above
ledgesnap sequence, Dr. Mario must input X => .6375 to the left
on either frame 2 or 3, followed by X => .2875 to the right on
frame 4. This technique is so difficult with an analog stick that
it can be considered a digital inputs-exclusive.

[10.1.5] Crouch -> U/UF-Tilt

Crouch can be cancelled into any attack on the very next frame.
Whereas U/UF-tilt are physically far away from crouch on an
analog stick, they are immediately accessible with digital
inputs. These tilts can be useful after cancelling run into
crouch, or after crouch cancelling an attack.

[10.1.6] Moonwalk

Digital inputs allow you to alternate the horizontals on frame 1
then 2 to perform the best moonwalk in the game.

[10.1.7] Dash Back -> Dash Back

Once a dash forward is initiated, it can be cancelled into a dash
back on frame 5. A dash back, however, can be cancelled into
another dash back on frame 3. Digital inputs make a single
repetition of dash back (frame 1) -> dash back (frame 3) entirely
possible (the rate of subsequent repetitions will be on par with
that of an analog stick).

[10.1.8] Dash -> Jump With Backwards Trajectory

With characters who have 3 frames of jumpsquat, it is difficult
to dash in one direction (frame 1) then reach the opposite
direction in time for trajectory to be calculated on the final
frame of jumpsquat (frame 4) with an analog stick. Digital inputs
make this a breeze, since they can already be there by frame 2.

[10.1.9] Aerial Drift

The impact digital inputs have on aerial drift is largely
misunderstood. While they are better overall, this is not nearly
to the degree some people believe, nor for the reasons that might
appear to be true.

Most assessments of aerial drift fail to account for jump
trajectory, which is an entirely separate mechanic. As shown in
Section 10.1.6, jump trajectory is calculated based on your X-
value on the final frame of jumpsquat. This locks your character
into an arc that cannot be exceeded once it has been determined.
For example, X .2875 trajectory followed by X 1.0 aerial drift
(on every airborne frame) will travel significantly less far than
X 1.0 trajectory followed by X 1.0 aerial drift. In competitive
play, it is usually best to takeoff with either X 0 or X +/-1.0
trajectory. The former allows you to assess the situation before
making a decision, while the latter gives you the most potential
to drift in either direction.

Neither digital inputs nor an analog stick ever struggle to
takeoff with X 1.0 trajectory (excluding the situation I covered
in Section 10.1.6); however, preparing to perform aerials with
the A button can arbitrarily cause conflict. The coordinates with
the greatest X-value that produce a D-air, for example, are X

+/-.6375 Y -.7625; therefore, pointing in D-air territory prior
to takeoff results in your jump trajectory being stunted.

For this reason, it is always best to C-stick the 4 directional
aerials. The analog X/Y-coordinates can then be aimed as desired,
leaving N-air as the only aerial that conflicts with jump
trajectory. This is pertinent to the matter at hand because the
B0XX’s button layout encourages you to always C-stick your
directional aerials, whereas the Gamecube controller’s does not.
I mentioned this in Section 2.1.2 when I criticized the Gamecube
controller for its C-stick being inaccessible without a grip most
players aren’t willing to employ. This tends to result in B0XX
users having a jump trajectory advantage over Gamecube controller
users despite the option being there to nullify this in full. The
B0XX’s Nunchuk-compatibility will likely open people’s eyes to
just how much of an inconvenience this is.

As far as aerial drift itself goes, both controllers have their
advantages. Unlike with jump trajectory, which favors polarizing
coordinates like X 0 and X +/-1.0, an analog stick has merit when
it comes to aerial drift. Through its intuitive design and full
range of X-values, an analog stick allows you to effortlessly
point at where you want to go. This is usually much more
efficient than repeatedly tapping X -1.0 and X 1.0 to station
yourself with digital inputs (since using the X-values in between
is even more difficult).

On the flipside, an analog stick cannot compare to how effective
digital inputs are at alternating one horizontal, then the other.
Whereas an analog stick will typically complete this sequence by
frame 4 or 5, digital inputs can complete it by frame 2. This
shines when aerial drifting, since it is the only movement-
related area of the game where directional inputs will always
produce immediate results.

Currently, I am inclined to believe that the Gamecube controller
is advantaged at aerial drifting in one direction (i.e. East
only), while the B0XX is clearly advantaged at alternating two
directions. Even though it doesn’t always come into play, the
B0XX’s advantage is less replaceable, making it more valuable
overall. This is because digital inputs can simulate fine analog

control (though this requires a high degree of skill), whereas
their lack of recoil truly cannot be replicated with an analog
stick.

[10.2] Precision

In most cases, it is easy to remove precision-related advantages
from the B0XX. This is usually a one-step process that involves
banning the coordinates in question. Despite this tendency, there
remains a notable instance of the B0XX inherently being more
precise. This pertains to a basic function that cannot be
removed.

[10.2.1] No-Fastfall from Ledge

When ledgedashing, it is theoretically always best to fall from
the ledge (on frame 1) without fastfalling on frame 2. This
causes your character to remain at nearly the same elevation on
frame 2, which can be used to create 2-frame windows on your
fall, jump, and airdodge inputs (as opposed to 1-frame windows
had you fastfell).

Fox’s Ledgedashes:

 Frame 1 Fall Fall Fall
 Frame 2 Jump No-Fastfall Fastfall
 Frame 3 -- Jump Jump
 Frame 4 -- -- --
 Frame 5 Airdodge -- --
 Frame 6 Airdodge --

Frame 7 Airdodge

With Fox, for example, ledgedashing is most consistent* if you
time your no-fastfall for frame 1.5, jump for frame 2.5, and
airdodge for frame 5.5. This is because Fox’s frame 5 and frame 6
ledgedashes are interchangeable (since they both require the
airdodge to take place 3 frames after the jump), which makes it
best to time your inputs for in between frames (to pad yourself
with leniency in either direction). A no-fastfall is needed on
frame 2 to make the frame 6 ledgedash a part of this equation.

*These are the most consistent inputs timing-wise. Jump
trajectory and airdodge shallowness are separate variables that
this chart fails to account for.

With the Gamecube controller, there are three ways a no-fastfall
from ledge can be performed. Since each of these methods have
unique characteristics, I’ll go over them one at a time.

Analog Stick / Back

Despite being widely perceived as the best way to ledgefall,
pointing the analog stick backwards is the worst of the three no-
fastfall from ledge methods, since it defeats its own purpose.
This is because it compromises your ability to jump with neutral
or forwards trajectory on frame 2, making it nearly impossible to
perform the most intangible ledgedash. Since jumping with
backwards trajectory automatically results in a SD when
ledgedashing (because it prompts the backflip animation), this
method usually forces you to wait until frame 3 to jump safely,
resulting in only 1-frame leniency on your jump and airdodge.

Analog Stick / Down (Y -.2875 through -.6500)

Slightly pressing downwards on the analog stick is probably tied
for the best way to no-fastfall from ledge but isn’t without its
downsides. Since overshooting into Y <= -.6625 will cause you to
fastfall, there is a learning curve to this method. Jump
trajectory is also compromised by this method due to the gentle
nature of the motion it requires (your analog stick probably
won’t be extended that far horizontally by the time you jump).

C-Stick / Back or Down

A claw grip-exclusive: using the C-stick to ledgefall is also
perfectly viable but suffers from similar problems. When using
this method, you must be wary of alternating between the C-
stick’s cardinals and quadrants, which will cause your character
to perform an aerial and (most likely) SD. For example, if you
fall with C-Left on frame 1, then shift to C-Down-Left on frame
2, a B-air or D-air will come out. As a result, this method
requires a degree of precision comparable to that of gently

pressing the analog stick downwards. Jump trajectory is also
compromised by this method, since you’ll have to refrain from
jamming the analog stick horizontally until frame 2 or later (if
you simultaneously point in ledge get-up territory on the analog
stick and ledgefall territory on the C-stick on frame 1, the
ledge get-up takes priority).

All in all, there are two viable no-fastfall from ledge methods
on the Gamecube controller, both of which incur risk. On the
B0XX, all three no-fastfall from ledge methods are viable, and
none of them incur risk. Pressing the analog stick backwards
becomes viable since physical recoil no longer exists, while the
other two methods cannot fail (since overshooting into
undesirable territory is impossible). This makes the B0XX more
consistent at no-fastfall from ledge than the Gamecube
controller.

It is also worth noting that a byproduct of the Nunchuk B0XX is
the third method becoming risk-free. Since its C-stick is
comprised of digital buttons, the Nunchuk B0XX isn’t subject to
the challenge of not shifting between the C-stick’s cardinals and
quadrants. This allows a “Gamecube controller” to guarantee
itself no-fastfalls from ledge.

Despite this, ledgefalling with the C-stick on the Nunchuk B0XX
isn’t always the best option. For that matter, none of the no-
fastfall from ledge methods (on the Gamecube controller, B0XX, or
Nunchuk B0XX) covered in this section are unequivocally the
“best” way to ledgedash. This is because the most potent strategy
is to disregard not fastfalling and jam the analog stick into X-
value territory in order to perform the most intangible ledgedash
with as much jump trajectory as possible (see Section 11.1.1).

[11] Gamecube Controller Advantages

[11.1] Hardware

The Gamecube controller has scattered advantages stemming from
the physical construction and/or inner workings of its analog
stick. There is no common denominator among these other than that
they are hardware-related.

[11.1.1] Most Intangible Ledgedash

In Section 10.2.1, I examined the theoretical best timings for
the (no-fast)fall, jump, and airdodge of a ledgedash. While
following the steps provided in Section 10.2.1 will increase your
ledgedash consistency*, doing so will stunt your ledgedash
potency. This is because, on a human level, all of the no-
fastfall from ledge methods (on the Gamecube controller, B0XX,
and Nunchuk B0XX) are suboptimal for jumping with trajectory
(refer to Section 10.2.1); therefore, the most potent ledgedash
method does not look to no-fastfall from ledge.

As explained in Chapter 6, jump trajectory is a vital component
of ledgedashing. Jump trajectory will always contribute to the
distance of a ledgedash, but in some cases it can even determine
a ledgedash’s success. For these reasons, it is best to
prioritize jumping with trajectory (preferably as much as
possible) in some situations. This is done by jamming the analog
stick into > 50° territory in order to avoid ledge get-up (< 50°)
while also picking up an X-value either prior to, or alongside
the jump frame of your ledgedash. In the process, you will most
likely traverse Y -.6625 (fastfall) due to the forceful nature of
this motion, which means the second most intangible ledgedash
will not be an option. This is inconsequential, however, if you
are confident in your ability to perform the most intangible
ledgedash.

*Sometimes, a lack of jump trajectory will cause a ledgedash to
fail; therefore, the various no-fastfall from ledge methods only

increase the consistency of ledgedashes that don’t require jump
trajectory to succeed.

In particular, it is crucial that you jump with trajectory on the
harder stages (FD, YS, PS) in order to reduce the shallowness
needed on your airdodge. On the B0XX, this correlation still
exists, but it behaves in a much more fixed manner. Since the
B0XX’s airdodge angles are set in stone, jumping with trajectory
isn’t just recommended, but required for certain ledgedashes.

Whereas the Gamecube controller can always initiate a fall in >
50° territory, the B0XX must fall elsewhere to perform < 50°

ledgedashes. This makes the B0XX less effective than the
Gamecube controller at jumping with trajectory.

The dilemma with this is the B0XX is worse at jumping with
trajectory than the Gamecube controller. With an analog stick,
you’re always able to aim for X-value territory as early as the
fall frame (frame 1) of a ledgedash. Since > 50° territory is
valid for both the fall and the X-value, it is possible to
satisfy all of your criteria before the jump frame (frame 2 or
later) even takes place. This effectively creates a 2-frame
window (at minimum) to jump with trajectory.

On the B0XX, falling in > 50° territory during a < 50° ledgedash
sequence is impossible. 50° Line Integrity (one of the non-
dedicated modifier restrictions) ensures this in order to
preserve the challenge of jumping with trajectory; however, this
results in it becoming more difficult to jump with trajectory on
the B0XX than on the Gamecube controller. Since the B0XX cannot
fall with the analog stick pointed forward and perform a < 50°
ledgedash, it must point the analog stick forward on the jump
frame. This gives the B0XX only a 1-frame window to jump with
trajectory when performing the most intangible < 50° ledgedashes.

Fox in particular is crippled by this 1-frame window because his
frame 5 30.5° ledgedash requires him to jump with trajectory on
the harder stages (see Section 6.2.1). This is mitigated by the
fact that the 30.5° airdodge allows Fox to perform his second*
most intangible ledgedash on frame 6. The jump frame for this
ledgedash takes place on frame 3, which gives the player a much
more reasonable 2-frame window (frames 2 and 3) to jump with
trajectory. It is a must that the B0XX is permitted the airdodge
coordinates X +/-.8500 Y -.5000 (30.5°), as Fox’s ledgedash
capabilities on the harder stages are astonishingly poor without
them. In general, the B0XX is more dependent on the second most
intangible ledgedash than the Gamecube controller.

*Technically, a frame 6 ledgedash is Fox’s third most intangible
ledgedash (and a frame 5 ledgedash is his second). Through ECB
manipulation, Fox is able to ledgedash on frame 4. This ledgedash

has not been mentioned throughout this document because it cannot
be performed in most situations.

When performing Fox’s frame 5 ledgedash, don’t airdodge in the
final ~7°!

So long as a Gamecube controller user is aware of their
character’s intangibility thresholds, their controller is
inherently better than the B0XX at performing the most intangible
ledgedashes. Jumping with trajectory will not only cause these to
travel further, but in some cases, make it on-stage.

[11.1.2] Actuation Time

One of the biggest misconceptions about digital inputs is that
their lack of a travel route grants them an actuation time
advantage over an analog stick. This would appear to be the case
based on a comparison of the two input methods’ analog X/Y
readings. Whereas an analog stick motion gets polled at several
points along the way, digital inputs skip directly from point A
to point B. This creates the illusion that digital inputs actuate
faster.

The error in this reasoning is that travel time and actuation
time aren’t the same thing. Travel time specifically pertains to
how long it takes to skip from point A to B once the analog X/Y-
coordinates have been actuated. Actuation time, on the other
hand, measures how long it takes for the decision to influence
the analog X/Y-coordinates to occur in-game in the first place.
The latter not only can’t be measured in-game, but most certainly
has a travel route; it just happens to be on a physical level.

In this case, the actuation time in question is the duration of a
B0XX button being physically reached and pressed. While there are
tools that can be used to measure an individual controller’s
actuation time (such as an oscilloscope), this isn’t a relevant
statistic. Since we are only interested in comparing two
controllers, the best method is to simply have the same person
actuate both of them simultaneously.

In December 2017, I conducted several Gamecube controller vs.
B0XX actuation time tests to compare how quickly the two
controllers initiated a dash (X-smash) (50 attempts per trial).
To ensure accurate results, the following assumptions were made:

-The Gamecube controller did not have P.O.D.E. (a
potentiometer malfunction that causes wonky X/Y-axis
readings).

-The B0XX uses Sanwa OBSF-24 buttons. These have a 30g
actuation force (the lowest of any arcade button on the
market).

-Starting positions were standard. My left thumb rested atop
the center of the Gamecube controller’s analog stick, while
my right index finger hovered 1cm* above the B0XX buttons.

*Maintaining this distance is necessary when playing on the
B0XX. Without it, you cannot alternate the horizontals
effectively.

-Both controllers were actuated swiftly and comfortably.

There are also some key pieces of information to convey:

-Only the Gamecube controller can be polled in X-tilt when
attempting a dash. This is because an analog stick must
traverse X-tilt to reach X-smash, whereas digital inputs
skip from the deadzone to X-smash. X-tilt actuates faster
than X-smash, since it is closer to the center of the analog
stick. X-tilt inputs are relevant, and will be tallied.

-Only dash forward was performed. Dash forward actuation
time was then extrapolated to assess dash back actuation
time with 100% accuracy (since dash forward actuation time
tells us X-tilt and X-smash actuation time).

-Our dash back assessments will operate under the assumption
that UCF is on. UCF makes X-tilt valid for the turnaround
frame of a dash back, effectively reducing dash back’s
actuation time on the Gamecube controller.

To put these actuation time differences in perspective, the
advantages in units traveled along the X-axis will be listed
(image for reference):

Lastly, Fox was the character used. Here are the the possible
outcomes he can receive (the units traveled are approximations):

Dash forward (X-tilt)
+.2 units on frame 1
+.2 units on frame 2

+2 units on frame => 3

Dash forward (X-smash)
+0 units on frame 1

+2 units on frame => 2

Dash back (UCF) (X-tilt)
+0 units on frame 1

+2 units on frame => 2

Dash back (UCF) (X-smash)
+0 units on frame 1

+2 units on frame => 2

Here are the results from the first trial:

GCC X-tilt 2 frames before B0XX X-smash: 7 occurrences
Dash forward: GCC 2.4 units advantage
Dash back (UCF): GCC 4 units advantage

GCC X-smash 1 frame before B0XX X-smash: 5 occurrences
Dash forward: GCC 2 units advantage

Dash back (UCF): GCC 2 units advantage

GCC X-tilt 1 frame before B0XX X-smash: 23 occurrences
Dash forward: GCC .4 units advantage
Dash back (UCF): GCC 2 units advantage

GCC / B0XX X-smash on same frame: 5 occurrences
Dash forward: Tie

Dash back (UCF): Tie

GCC X-tilt / B0XX X-smash on same frame: 10 occurrences
Dash forward: B0XX 1.6 units advantage

Dash back (UCF): Tie

In this particular trial, the Gamecube controller averaged a 1.04
units advantage on dash forward, and a 1.68 units advantage on
dash back (UCF).

All trials were consistent with these results. While this can’t
be seen on-screen, the Gamecube controller has a clear actuation
time advantage over the B0XX on UCF. At tournaments running on
Arduino adapters (which fix dash back by killing 1 frame of X-
tilt), this advantage is mostly neutralized.

[11.1.3] Wank Smash DI

Popular within the Smash 64 community, wank SDI is an aptly named
technique that allows you to generate SDI inputs as rapidly as
humanly possible. Recently, Wizzrobe has shown that while it may
not be as necessary, wank SDI is just as effective in Melee.

The only way to survive in Smash 64.

Wank SDI is performed by situating the analog stick against the
rim with your left thumb, then vibrating the controller back and
forth with your right hand. This requires you to slightly adjust
your grip on the controller, but the reward is worth it. Wank SDI
will generate SDI inputs every 3-4 frames (i.e. frame 1, 5, 9,
12, 16...) with the Gamecube controller, and can be performed
indefinitely. In terms of speed, this is on par with a burst of
quarter-circle SDI, but it comes with the advantage of removing
the need to time your SDI inputs.

The B0XX does not have a wank SDI equivalent.

[11.2] Analog

The Gamecube controller has higher potential in several areas due
to it having the full range of analog X/Y, C X/Y and L/R-values.

[11.2.1] Lightshield

Whereas the Gamecube controller contains the full range of analog
L/R 43 through 140, the B0XX is only able to pinpoint L/R 49.

[11.2.2] Trajectory DI

While the B0XX can TDI (trajectory DI) at angles that aren’t 45°
(through the use of Firefox coordinates, wavedash coordinates,
etc.), this feature not only isn’t formally supported, but
suffers from a massive intuition disadvantage. Overall, this
isn’t a concern, as TDI’ing in increments of 45° is surprisingly
adequate.

The B0XX’s main TDI-related disadvantages stem from its
horizontal TDI capabilities (or lack thereof). While these are
similarly unintuitive, the real problem is the shortage of
options. Since the B0XX only contains
X .2875, .4375, .5875, .7375, and 1.0, it cannot perform
ambiguous DI mix-ups. Perhaps even more importantly, slide-off DI
(influencing your character to slide off the end of a stage or
platform in order to regain actionability) is often impossible.
These two disadvantages simplify the punish game for your
opponent very frequently.

[11.2.3] Automatic Smash DI

The B0XX’s C-stick can only pinpoint C X or Y +/-1.0, C X
+/-.7000 Y +/-.7000, and C X +/-.9500 Y +/-.3000 (for UF/DF-
smash), which means it is missing the vast majority of its
coordinate plane. This limits the B0XX’s ASDI (automatic smash
DI) options.

Fox’s ECB (the orange diamond) is not above the platform during
frames 31-40 of his forwards techroll.

For the most part, this isn’t an issue, as it is usually best to
ASDI in one of the four cardinal directions with C X or Y +/-1.0.
However, there is a notable exception that pops up frequently in
competitive play. In techroll situations like the one shown in
the image, it is common to use DSDI (double-stick DI, a technique
that utilizes TDI from the analog stick and ASDI from the C-stick

at once to prompt a platform slide-off) in response to being
attacked by your opponent. Usually, C Y -1.0 (straight down) is
the ideal ASDI coordinate for this, but in certain cases this
won’t work. With Fox’s forwards techroll, for example, Fox’s ECB
shifts slightly off the platform on frames 31-40. If C Y -1.0 is
used here, a platform slide-off will not occur.

ASDI’ing in these regions (with the C-stick) will shift Fox’s
ECB back onto the platform while preserving as much downwards

influence as possible.

A few years ago, tauKhan deduced that downwards diagonal ASDI
could be used to DSDI with Fox (and potentially other characters)
in this situation. C X +/-.2875 Y -.9500, for example, causes
downwards influence in addition to X .2875 horizontal influence.
This horizontal influence is usually enough (more is needed at
higher %’s) to shift Fox’s ECB onto the platform and cause DSDI
to succeed.

Although the B0XX can pinpoint C X +/-.7000 Y -.7000, these
coordinates are not ideal for this technique, since their Y-value
of -.7000 only shifts Fox by 2.1 units along the Y-axis (ASDI =
X/Y * 3) when he is attacked. The maximum diagonal Y-value of
-.9500 (which shifts Fox by 2.85 units) causes DSDI to succeed
until much higher percents.

As with several other areas of the game, the B0XX would most
likely be too precise if given the ability to perform DSDI with
steep ASDI coordinates. This technique will probably always
remain a Gamecube controller-exclusive.

[11.2.4] Walk/Run

Whereas the Gamecube controller can walk with X .2875 through
1.0, the B0XX can only walk with X .2875, .7375, and 1.0 (without
the use of A/B/C/L/R/X/Y/Z).

Additionally, X <= .6125 will cause runbrake (the mechanic that
causes run to cease) once your character is in the run state.
Whereas the Gamecube controller can vary its run between X .6250
and 1.0, the B0XX can only modify run to X .7375.

[11.2.5] Firefox

With the Gamecube controller, you are able to choose from
hundreds of Firefox angles. These allow you to weave around
edgeguards and sweet-spot the ledge whenever you are in range.

With the B0XX, you are only able to choose from 48* Firefox
angles. Since these angles are approximately 4.6° apart from each
other, weaving around edgeguards usually means settling for an
imperfect one. Similarly, sweet-spotting the ledge is hindered,
although measures can be taken to mitigate this. Most of the
time, the best strategy is to begin your up-B in a location that
offers you the option to sweet-spot the ledge. This solves one
problem, but not without creating another: the act of getting to
this location can give your opponent the extra few frames they
need to set up a successful edgeguard.

Additionally, the B0XX is incapable of selecting a Firefox angle
within 4.5° of the shallowest/steepest angle in the game.

*Technically, the shield tilt coordinates (X +/-.7500 Y .6500 and
X +/-.7250 Y -.6875) and airdodge coordinates (X +/-.8500 Y
+/-.5000, X +/-.5000 Y +/-.8500, X +/-.8750 Y .4750, and X
+/-.4750 Y .8750) make for a total of 64 Firefox angles.

[11.2.6] Airdodge

The biggest disparity between the Gamecube controller and B0XX is
their airdodge capabilities. Between inherent disadvantages and
the need for a hard cap on its upper/lower limits, airdodge
brings out the worst in a controller that lacks analog control.

Usually, I am of the opinion that the B0XX’s intuition-related
disadvantages become nonfactors as one gains mastery over the
controller. Wavedashing is the main exception to this rule. Since
a wavedash must be aimed instantaneously, it is extremely
difficult to determine when a 45° or 59.5° airdodge should be
chosen over 30.5° (which most players will find themselves
defaulting to). An arbitrary disadvantage also comes in the form
of being unable to change your mind once you’ve committed to a
wavedash angle. On the Gamecube controller, a spontaneous
decision can be made to readjust the analog stick during
jumpsquat. This cannot be done on the B0XX, since it is usually
impossible to shift between the modifier buttons so quickly.

Similar to sweet-spotting the ledge with Firefox, certain
starting points are preferable when airdodging with the B0XX.
When recovering, the especially useful 61.5° (steepest) airdodge
must begin at a specific elevation relative to the stage in order
to minimize the amount of time your character hovers in the air
before landing. Grapple characters (Samus, Link, and Young Link)
are hindered in their ability to align their recoveries with the
ledge for similar reasons. Most notably, microspacing with
wavedashes does not exist. Since the B0XX is only capable of
airdodging at three different angles, the ideal wavedash length
usually isn’t present. It is recommended that you adapt a neutral
game centered around microspacing with dashes instead.

Finally, none of the aforementioned disadvantages would have
mattered had the B0XX been allowed to wavedash at 16.8°. In
giving the B0XX its most necessary nerf, its shallowest wavedash
angle goes from being humanly unrealistic to underwhelming. 30.5°
may be viable, but any pro would have faith in their ability to
consistently beat this benchmark with the Gamecube controller.

[12] 1.0 Cardinal

[12.1] Overview

Throughout this document, I refrained from acknowledging the
1.0/.9875 cardinal disparity due to how insignificant, yet
lengthy of a subject it is. Ultimately, this is a game mechanic
where digital inputs are marginally better than the ideal analog
stick as it stands. It is unfair to isolate them, however, due to
the glaring differences in 1.0 cardinal efficacy among Gamecube
controllers.

The root of the problem is a decision made by the game developers
that can be considered questionable at best. Within each cardinal
(on both sticks), there is a generous range assigned to the value
.9875, yet only a single set of coordinates assigned to 1.0.
Being the greatest X/Y-value in the game, the latter is naturally
more desirable in most situations. When running, for example, Fox
will reach a peak acceleration of 2.17 units/frame with .9875, as
opposed to 2.20 units/frame with 1.0. While this is an almost
unnoticeable difference, the fact remains.

A Gamecube controller’s analog X/Y-values being read in 20XX
4.07.

In a perfect world, the 1.0 cardinal could have added an element
of skill to the game. In reality, however, this isn’t the case.
Due to how tiny the 1.0 cardinal’s range is, pinpointing it is
almost entirely dependent on hardware. The Gamecube controller
shown in the picture, for example, will consistently receive X
-.9875 Y -.0125 when its analog stick is pointed to the left.
This consistency stems from a plastic case with sharp corners
(these help situate the stick in a specific location), while X
-.9875 Y -.0125 stems from misalignment due to manufacturing
variance. Had it not been for this misalignment, this controller
could have consistently pinpointed the 1.0 cardinal.

Based on this information, it is clear that finding the 1.0
cardinal varies from controller to controller. The next issue,
ironically, has to do with another developer’s decision.

At the moment, the competitive Melee scene has displayed
widespread acceptance of Universal Controller Fix, a game mod
intended to fix inconsistencies in Gamecube controller
performance. Generally, these inconsistencies stem from poorly
designed game mechanics. Dash back, which gives a 1-frame window
for an analog input, is an oversight by any developer’s
standards. Likewise, shield drop, which has a miniscule range of

3 Y-values, was presumably shafted late into Melee’s development
by the inclusion of spotdodge. These are the Gamecube
controller’s two most notorious sources of inconsistency, as well
as the ones most desperately in need of repair.

UCF fixes these two mechanics then closes its doors, despite it
not necessarily being correct to do so. Lesser sources of
inconsistency, namely the 1.0 cardinal, remain unaddressed as of
the current version. This decision appears to have been made for
two reasons.

For one, fixing the 1.0 cardinal simply isn’t in demand. Unlike
with high dash back % and shield drop notches, there has never
been widespread incentive to seek out and/or vend controllers
that possess 1.0 cardinals (despite the fact that they can be
notched). Those who don’t believe UCF should operate on an
objective metric tend to dismiss 1.0 cardinals on this basis
alone. In patching a game, it is common practice to target
mechanics that necessitate the patch in the first place rather
than make every conceivable improvement. From this perspective,
1.0 cardinals do not make the cut.

The issue with this view is that it practically concedes that the
1.0 cardinal meets UCF's criteria, yet dismisses the 1.0 cardinal
due to a lack of demand, an entirely arbitrary factor. This
decision is then justified by a philosophy that applies to
modern-day games that often have thousands of imperfections to
attend to, which should not apply to UCF, a mod intended to serve
a niche purpose within a game that has a handful of controller-
related problems at most. The lack of demand is especially
meaningless given the lack of knowledge surrounding the 1.0
cardinal. Had any effort been made to educate the public about
this mechanic, demand for it very well could have been there.

This leads to the second counterargument to the 1.0 cardinal’s
inclusion, which is founded on falsehoods. Many proponents of
UCF, including the dev team themselves, have propagated the
belief that UCF merely causes controllers to tie the theoretical
best hardware (without exceeding it in any capacity). Under this
premise, the 1.0 cardinal receiving a redesign can be dismissed
on the basis of the 1.0 cardinal becoming easier to pinpoint than

on vanilla. The issue with this is that UCF already exceeds the
best vanilla controller in several ways.

One way to debunk the claim that UCF doesn't exceed the best
hardware is to examine the unavoidable byproducts of fixing dash
back and shield drop. In Section 5.1.3, for example, I showed why
it is impossible for shield drop notches and jab cancel notches
to coexist on vanilla. By increasing shield drop’s range, it
becomes possible to notch for both on UCF. Even more striking are
the implications of fixing dash back, a change that flips the
controller lottery on its head. On vanilla, highly elusive
controllers “suffer” from a potentiometer malfunction known as
P.O.D.E. This gives them high dash back % at a cost. P.O.D.E.
compromises pivoting, dashing out of crouch, and several other
areas of the game. On UCF, no such trade-off is necessary. Since
dash back is distributed on a software level, it is possible to
reap the benefits of P.O.D.E. without actually having it. This
not only devalues P.O.D.E., but also lets you have the best of
both worlds.

While these byproducts are telling on their own, there is no need
to delve so deeply. The easiest way to debunk the UCF team’s
claim is to examine UCF's redesigns of dash back and shield drop
themselves. Formerly, no Gamecube controller could successfully
dash back 100% of the time or perform shield drops with as little
finesse as UCF requires. Even though UCF isn’t that big of a jump
from a high P.O.D.E controller (95-98% dash back) with Y -.6750
notches (extremely easy shield drops), this is more so meant to
illustrate a point. In order to fix inconsistencies, UCF exceeds
the best possible hardware.

How else could UCF fix inconsistencies? If a mechanic is broken,
its redesign inherently has to set the bar higher. Once this has
been established, UCF’s rationale must be re-evaluated entirely.
The essence of this mod isn’t to tie the best hardware, but to
redesign mechanics that make it impossible to achieve equal
performance through hardware. Under this premise, the fact that a
controller with eight 1.0 cardinals (four on each stick) is
nearly impossible to maintain is no longer a relevant detail. The
bottom line is that by not redesigning the 1.0 cardinal, we are
knowingly accepting a less fair version of Melee.

[12.2] Redesign

Before I can show how the 1.0 cardinal should be redesigned,
there is a crucial concept I must illustrate.

Shield drop ranges on vanilla (Y -.6625 through -.6875) and the
current version of UCF (Y -.6625 through -.7875).

When UCF was first introduced, a common complaint was that
“shield dropping [had been made] too easy.” After all, UCF had
given it a whopping 11 Y-values to vanilla’s 3. While this change
allowed everyone to experience the joy of shield dropping, it was
initially subject to criticism. Many people felt that shield
drop's range should have been increased, but not by this many Y-
values.

The hole in this logic is that it evaluates the shield drop mod
based on the number of Y-values it converts, rather than how
difficult it is to shield drop under the mod. The former is an
entirely superficial statistic that can be misleading at face
value. This is because, just like on vanilla, two controllers
that have the same shield drop range on a software level aren’t
necessarily on an even playing field.

A theoretical shield drop range UCF could have used. 2 Y-values
(-.7000 and -.7125) are added to vanilla’s 3. This would have

failed to achieve equality among controllers.

Say, for example, UCF increased shield drop’s range by only 2 Y-
values. This would have had a drastic effect on some controllers,
but none on others. Whereas controllers with corners centered on
Y -.7000/-.7125 would have gained the ability to shield drop,
controllers with Y <= -.7250 would have been unaffected. This mod
would have failed to encompass a significant percentage of
controllers.

Despite their differences, these shield drop ranges are equally
easy to pinpoint on most controllers. Either of these would have

been acceptable.

For this reason, a redesign can only be correct if it guarantees
all controllers a 100% success rate. UCF achieves this with its
overwhelmingly generous shield drop range of 11 Y-values (top
left). It should be understood, however, that there would have
been nothing wrong with UCF going even further (top right). The
only thing to be wary of when redesigning shield drop is
shrinking spotdodge’s range in exchange. This justifies keeping
shield drop’s redesign to a minimum.

1.0 cardinal redesigns that I do not recommend.

I took the time to establish this concept in order to convey why
neither of the above 1.0 cardinal redesigns make sense. It should
be obvious that Redesign A, which converts an additional 9 sets
of coordinates to 1.0, is a far cry from being acceptable. Sharp
corners are still entirely necessary under this redesign, and
misalignment remains a significant disadvantage. A controller
that begins with a worn down case and X .9875 Y .0375 (to the
right), for example, is far more likely to exit this modified 1.0
range than one that begins with a sharp case and X .9875 Y .0125.
Redesign A would be adequate for some controllers, but not most.

Redesign B, on the other hand, is by no means bad - it just isn’t
logically consistent. Its additional 25 sets of coordinates would
encompass the majority of controllers, but performance would
still vary ever so slightly. Redesign B is suggestive of wanting
to preserve some sort of difficulty in pinpointing the 1.0
cardinal, when in reality very few controllers would still be
subject to this. Most controllers would already be well outside
the realm of ever missing.

All X/Y and C X/Y-values that are => .9625 should be converted
to 1.0. This is a non-arbitrary cutoff, since => .9625 is

cardinal-exclusive (.9500 can be reached in the quadrants).

Eventually, things slippery slope their way into justifying
Redesign C. Unlike shield drop’s redesign, there is no trade-off
(spotdodge’s range) to be wary of when redesigning the 1.0
cardinal; Redesign C sacrifices the values .9625 and .9750, which
are obsolete to 1.0. There is no reason not to do this, since it
helps ensure a 100% 1.0 cardinal success rate across all
controllers; therefore, Redesign C is the 1.0 cardinal redesign I
encourage the UCF team to implement. If Redesign C (or even
Redesign B) went through, the Gamecube controller’s 1.0 cardinal
efficacy would tie that of digital inputs, at which point the 1.0
cardinal would no longer be a point of contention.

[12.3] Plan B

While I believe the most logical course of action is for the 1.0
cardinal to receive a redesign, I am aware that this doesn’t
necessarily mean the UCF team will implement one. Political
decisions like these aren’t always about correctness. If the UCF
team chose to redesign the 1.0 cardinal, it would (ironically) be
viewed as the biggest update to their mod yet. This may or may
not be a risk they are willing to take.

In the event that the 1.0 cardinal is not redesigned, the
Gamecube controller’s ability to pinpoint the 1.0 cardinal could
only be equal or worse to that of a digital controller. Despite
this, there are several reasons the B0XX should be permitted 1.0
cardinals (rather than .9875) regardless of the UCF team’s
decision. Some of these are relatively straightforward, while
others involve more complex interactions.

The most direct way to justify the B0XX being permitted 1.0
cardinals is to assess the ideal Gamecube controller’s 1.0
cardinal efficacy. This is to ask, “How much worse than the B0XX
is the Gamecube controller [with the best hardware] at
pinpointing the 1.0 cardinal?” The answer is: not much. Despite
the 1.0 cardinal’s microscopic range, lucky alignment and sharp
corners will make a Gamecube controller incredibly consistent at
pinpointing it. While this document does not contain video
evidence, this can be surmised by verifying that a Gamecube
controller with sharp corners does in fact get polled at the same
set of coordinates consistently; therefore, it is within the
rules to use a Gamecube controller that most frequently receives
the 1.0 cardinal in all four directions (on both sticks). If we
are to then base the B0XX off of what is theoretically legal (the
only rational approach to take), restricting its cardinals
to .9875 would be far more extreme than guaranteeing them 1.0.

At this point, the remaining counterargument is that the B0XX is
still more efficient than the Gamecube controller at pinpointing
the 1.0 cardinal. While this is true, this shouldn’t be taken at
face value. Similar to how I encouraged you to evaluate the
redesigned shield drop ranges in Section 12.2 based on their

difficulty rather than their size, the 1.0 cardinal should be
evaluated based on its implications, not its magnitude.

At first glance, giving the B0XX .9875 cardinals would appear to
be consistent with the trend of making the B0XX equal to or worse
than the Gamecube controller wherever possible; however, this
line of reasoning fails to consider what makes 1.0 cardinals a
competitive concern in the first place. Among the areas of the
game affected by the 1.0 cardinals, horizontal movement speed is
paramount. As shown in Section 11.1.2, the B0XX is already at an
actuation time disadvantage in this area that outweighs the
advantage gained by having 1.0 cardinals. Based on this statistic
alone, it is reasonable to permit the B0XX 1.0 cardinals as
compensation.

Fox’s frame 6 ledgedash does not succeed on the harder stages
with a 30.5° airdodge and X .9875 jump trajectory.

Furthermore, there is an interaction involving Fox that tips the
scales even more heavily in favor of the B0XX being permitted 1.0
cardinals. In Section 6.1.3, I explained that the B0XX was given

the airdodge coordinates X +/-.8500 Y -.5000 (30.5°) so that Fox
could ledgedash on frame 6 on the harder stages, and in Section
11.1.1 I elaborated on the necessity of this technique. Something
I didn’t mention in either of those sections, however, is that
Fox’s frame 6 ledgedash only succeeds with a 30.5° airdodge on
the harder stages if Fox jumps with X 1.0 trajectory (X .9875
jump trajectory will not work). This is due to the inverse
correlation between airdodge shallowness and jump trajectory.
Since 30.5° is the steepest eligible angle for Fox’s frame 6
ledgedash, it is only enabled by the strongest jump trajectory;
therefore, if Fox’s jump trajectory is nerfed to X .9875, his
airdodge angle must be buffed to X +/-.8625 Y -.5000 (30.1°) in
order for his frame 6 ledgedash to succeed.

This means that nerfing the B0XX’s cardinals to .9875 would have
to coincide with a buff that would roughly negate this nerf’s
impact. It must be understood that whether the combination of 1.0
cardinals and a 30.5° airdodge or .9875 cardinals and a 30.1°
airdodge is chosen makes a negligible difference overall. Neither
combination is better across the board; dash-reliant characters
(i.e. Captain Falcon) would surely prefer the former combination,
while wavedash-reliant characters (i.e. Luigi) would prefer the
latter. It is, therefore, reasonable to endorse one or the other
based on an assessment of game balance, at which point the
combination of 1.0 cardinals and a 30.5° airdodge is clearly the
healthier choice. This is single-handedly due to the fact that
this combination encourages onstage gameplay with its stronger
cardinals, whereas the combination of .9875 cardinals and a 30.1°
airdodge encourages ledgedashing with its stronger airdodge
angle. Naturally, the former favors the skill set we should be
looking to test.

For all of the aforementioned reasons, it is clear that the B0XX
should be permitted 1.0 cardinals.

[13] Conclusion

There are many genres of games in which analog inputs would never
be able to coexist with digital inputs. It is a blessing that
this is not the case with Super Smash Bros. Melee, the game
perhaps most in need of them. As I found ways to replicate most
of the Gamecube controller’s intrinsic challenges over the course
of the B0XX’s development, it became increasingly apparent that
this project was destined to happen. I can’t say that this
surprised me; having had this game since the day it came out, I
have witnessed its divinity countless times. That being said, I
am glad that this worked out.

There is no doubt in my mind that the B0XX should be tournament
legal in its current iteration. Following its fine-tuning, the
B0XX is a well-balanced controller that suffers from several
inherent disadvantages but compensates for them with new flavor
in other areas. If anything, this is the most we could have asked
for from a third-party controller; with a physics engine as
complex as Melee’s, it is fitting that the B0XX provides players
with a fresh experience.

As evidenced by its overwhelming demand, the B0XX will likely go
down as one of the biggest leaps forward in the history of Melee.
HAL Laboratory may have created a masterpiece back in 2001, but
nothing is perfect; in recent years, we have come to embrace the
fact that the future of this game lies in our hands. Software
modifications and third-party controllers have gone from being
radical ideas to household names as Melee remains alive as ever
in 2018. It is paramount that the evolution of this industry
continues to prosper with the legalization of the B0XX.

Thank you for reading,
Aziz “Hax$” Al-Yami

[14] F.A.Q.

Q: If the B0XX is legal, are any Gamecube controller PCB mods
legal?
A: No.

Q: What does all of this mean for the legality of other digital
controller brands?
A: This document does not endorse the legality of any controller
that does not utilize the latest version of the B0XX software and
abide by the B0XX ruleset.

Q: How will future updates to the B0XX’s software be carried out?
A: Presumably, the Melee It On Me Competition Committee will
serve as the hub for the B0XX’s tournament legal parameters.

Q: How will tournament organizers verify that someone is running
the latest version of the B0XX software?
A: At the moment, only a handful of people have a B0XX. Once the
product is commercially available, verifying a controller’s PCB
will be a one-step process through a downloadable client on our
website. The only tools needed will be a USB Type-C cable, a
computer, and an internet connection.

Q: Should it be standard protocol to verify a B0XX user’s PCB?
A: No. Unless there is reason to believe that someone is
cheating, their controller should not be examined.

Q: Will analog ranges (i.e. Firefox angles) be customizable on
the tournament patch?
A: No. Even if allowing for customization within the parameters
I’ve set wouldn’t raise any concerns, I believe the distributions
I’ve chosen are most efficient from a logistical perspective.

Q: Can I rearrange my button locations?
A: Yes.

Q: Will I be able to play on an un-nerfed version(s) of the B0XX?
A: Yes. We will provide plenty of recreational patches.

Q: Will the B0XX support other games?
A: Yes. More information TBA.

Q: Will a WiiU adapter be needed to use the B0XX on a PC?
A: No. More information TBA.

Q: When will the B0XX be commercially available, and how much
will it retail for?
A: July 2018 / $199.99 USD + shipping/tax. Wii Nunchuk sold
separately.

Q: Will the initial run of the B0XX be sold through a
Kickstarter?
A: No. The initial run will already have been manufactured by the
time it goes on sale.

Q: Where can I stay tuned for B0XX-related updates?
A: All major updates will be made through my Twitter account
(https://twitter.com/ssbmhax) and our website (http://20XX.gg).
You can also subscribe to our newsletter through our website, or
join our Discord channel (http://20XX.gg/discord).

http://20xx.gg/
http://20xx.gg/discord/
https://twitter.com/ssbmhax

[15] Patch Notes

04/16/2018

Initial release.

04/19/2018

-Minor grammatical revisions.
-Section 5.2.4 (lightshield nerf) added.
-Section 5.3 (nerfs summary) updated.
-Section 7.1 (Modifier 1) updated to explain that Modifier 1
enables analog L 49.
-Section 8.4 (summary of Chapter 8) added.
-Section 10.1.1 (quarter-circle smash DI) updated.
-Section 10.1.4 (Dr. Mario’s reverse up-B cancel) added.
-Shield tilt removed from Chapter 11.
-Page numbers removed.

04/20/2018

-UF/DF-smash’s coordinates changed to C X +/-.8125 Y +/-.2875
(see Section 9.1)
-Section 10.1.3 renamed to “Samus’ Short Hop Fastfall Missile.”

04/23/2018

-Section 10.1.2 (wiggle) added.

04/25/2018

-Section 5.2.8 (Firefox nerf) added.
-Section 5.3 (nerfs summary) updated.
-Sections 7.1 (Modifier 1) and 7.2 (Modifier 2) updated to
explain that X +/-.7375 Y +/-.2875 and X +/-.2875 Y +/-.7375 are
now intended to serve as Firefox angles.

04/27/2018

-Section 5.2.1 (Y-tilt + > 50°) updated to outlaw Y -.6625,
-.6750, and -.6875. Even though these Y-values are not in Y-tilt
territory, they can be used to perform turnaround D-tilt (Y <=
-.7000 causes crouch, which prevents this).
-Sections 5.2.7 (airdodge) and 5.2.8 (Firefox) updated to explain
that the B0XX is based on a stock Gamecube controller, not one
that contains wavedash/Firefox notches.
-Section 8.1.1 (jump trajectory integrity) added.
-Section 8.2.1 (Firefox) updated.
-Section 10.1.5 updated and renamed to “Crouch -> U/UF-Tilt.”
-Section 11.2.3 (automatic smash DI) updated to explain that the
B0XX will probably never be given the ability to perform DSDI
with steep ASDI coordinates.
-Section 11.2.5 (Gamecube controller’s Firefox advantage) updated
to account for Firefox nerf.

04/28/2018

-Section 8.2.1 (Firefox) updated.

05/01/2018

-Section 5.2.4 (lightshield nerf) updated to outlaw analog L/R-
values in proximity of 140. The B0XX is now restricted to L 49
specifically. Several other sections (5.3, 7.1, 7.2, 8.3.2,
8.3.4, and 11.2.1) were updated to account for this change.
-Section 5.2.9 (other nerfs) updated to outlaw Peach’s ledgedash.
Several other sections (5.2.7, 5.3, 8.3.3, 8.3.4, and 11.2.6)
were updated to account for this change.

